Abstract:
An apparatus for collecting and testing a sample is provided. The apparatus includes a test cavity and a collecting component. The test cavity is connected to the collecting component and the test cavity and the collecting component are in a liquid communication. An inner wall of the test cavity is provided with a first step. The collecting component includes a collecting rod and an absorbing element sleeved on the collecting rod. A connecting end of the collecting rod is provided with a barb. A tail end of the barb is tapered. The barb at the connecting end is clamped to the first step to connect the test cavity with the collecting component. A collecting and testing apparatus with an integrated structure is provided. The integrated structure integrates the collection and test of a sample, reduces a product structure and an operation difficulty of subjects.
Abstract:
The disclosure relates to devices, solutions and methods for collecting and processing samples of bodily fluids containing cells (as well as embodiments for the collection, and processing and/or analysis of other fluids including toxic and/or hazardous substances/fluids). In addition, the disclosure relates generally to function genomic studies and to the isolation and preservation of cells from saliva and other bodily fluids (e.g., urine), for cellular analysis. With respect to devices for collection of bodily fluids, some embodiments include two mating bodies, a cap and a tube (for example), where, in some embodiments, the cap includes a closed interior space for holding a sample preservative solution and mates with the tube to constitute the (closed) sample collection device. Upon mating, the preservation solution flows into the closed interior space to preserve cells in the bodily fluid. The tube is configured to receive a donor sample of bodily fluid (e.g., saliva, urine), which can then be subjected to processing to extract a plurality of cells. The plurality of cells can be further processed to isolate one and/or another cell type therefrom. The plurality of cells, as well as the isolated cell type(s), can be analyzed for functional genomic and epigenetic studies, as well as biomarker discovery.
Abstract:
A dissection system has a dissection platform which has a frame, an agitation platform, a tissue section tray, a solution dispenser unit, an airflow drying unit and a waste collection unit and a specimen collector which has a tubular body, a plunger button, a hollow shaft, a piston cylinder, a motor unit, a piston, a piston spring and a piston rod. The agitation platform, the solution dispenser unit, the airflow drying unit and the waste collection unit are disposed on the frame, and the tissue section tray is removably disposed on the agitation platform. The plunger button, the hollow shaft and the piston cylinder are movably inserted in the tubular body. The piston is slidably inserted within the piston cylinder, the piston spring is biased in between the piston cylinder and the motor unit, and the piston rod is connected in between the motor unit and the piston.
Abstract:
Coextruded plastic capillary tube and method of manufacturing a coextruded tube for collecting a volume of liquid. The tube is disposable, inexpensive to manufacture and can reliably draw blood and other aqueous based fluids into the tube by capillary action, at a fluid uptake level comparable to glass and other commercially pre-treated plastic tubes, without requiring further interior coating.
Abstract:
A molded plastic dispenser includes a disk and a skirt extending upwards from the disk defining a receptacle for receiving a test tube stopper therein. A spike tube extends from the disk into the receptacle and includes a distal sharpened end and a seat between the disk and the distal sharpened end for engaging the stopper. The skirt has a top rim disposed above the distal sharpened end of the spike tube.
Abstract:
A device for automatically aspirating and/or dispensing liquids with precision, comprising a housing having an opening at a lower end with a fixed tip protruding out of the lower end; an interchangeable cartridge disposed inside the housing, the cartridge having a holding frame and a spool of tubing provided in the frame such that one end of the tubing is aligned with the tip; and an actuator enabled to automatically extrude part of the tubing so as to accommodate a preselected volume of liquid, aspirate and/or dispense the liquid through the extruded tubing, and disconnect the extruded tubing from the device.
Abstract:
Some embodiments of the invention provide a system comprising a meter and a disposable cartridge for analyzing a fluid sample typically blood that is drawn into the cartridge by capillary action, negative pressure, positive pressure, or a combination thereof. The cartridge has at least one flow path, and includes at least one optical chamber for spectroscopic measurement, and at least one biosensor for biosensor measurement. The meter has a sample slot for receiving the disposable cartridge. The cartridges have electrical output contacts, and the meter slot has electrical input contacts. When the output contacts mate with the input contacts, the optical chamber becomes positioned for spectroscopic measurement. The present invention can provide joint-diagnostic spectroscopic and biosensor measurements.
Abstract:
A cannula (10) for use in removing samples of fluid from a container sealed with a pierceable membrane, the cannula including a hollow needle like portion (12) having a pointed forward end (20) shaped to allow forcible penetration through the membrane, the rear end (14) having a first bore (26) and an insert (40) located within the first bore (40) that reduces the effective size of the first bore (26) without blocking the first bore (26).
Abstract:
An easy to use device for the dialysis of a sample. The device embodies a liquid tight compartment, a portion of which is a membrane capable of allowing molecules and compounds of a pre-determined size to pass into and out of the compartment. The cartridge can be fabricated in a manner that provides a highly efficient surface area to volume ratio between the membrane and the sample, allows the use of standard laboratory pipettes for sample introduction and removal, is automatically oriented in a beneficial position when residing in dialysate solution, and prevents the potential for damage to the membrane from osmotic imbalance between the sample and the dialysate.
Abstract:
A liquid collection tube, such as a blood sedimentation tube, has, within, a barrier plug which permits air to pass therethrough but prevents the passage of liquid beyond the bottom of the barrier plug. The barrier plug has a resilient non-porous outer portion which engages the walls of the tube and a central porous core which is formed of a plurality of vertical adjacent filaments.