摘要:
Systems and methods of manipulating a color displayed by an article of wear comprising iron oxide colloidal nanocrystals arranged within chains are described. Steps may include forming the article of wear from a raw material that include the chains of nanocrystals, applying a magnetic field to the raw material, applying energy to at least some of the chains of nanocrystals to soften materials within the raw material immediately surrounding the chains of nanocrystals to which the energy is applied, adjusting a strength of the magnetic field to control the color displayed by the raw material, removing the energy to allow the materials within the raw material immediately surrounding the chains of nanocrystals to harden and fix a location of the nanocrystals within the chains, and removing the magnetic field.
摘要:
Articles comprises iron oxide colloidal nanocrystals arranged within chains, wherein the chains of nanocrystals are embedded within a material used to form the article or a transfer medium used to transfer a color to the article are described. The material or transfer medium includes elastic properties that allow the nanocrystals to display a temporary color determined by the strength of an external force applied to the article, and the material or transfer medium includes memory properties that cause the displayed temporary color to dissipate when the external force is removed, wherein the dissipation of the displayed temporary color is sufficiently slow as to be visually observable by an average observer's unaided eye.
摘要:
Systems and methods of manipulating a color displayed by an article of wear comprising iron oxide colloidal nanocrystals arranged within chains are described. Steps may include forming the article of wear from a raw material that include the chains of nanocrystals, applying a magnetic field to the raw material, applying energy to at least some of the chains of nanocrystals to soften materials within the raw material immediately surrounding the chains of nanocrystals to which the energy is applied, adjusting a strength of the magnetic field to control the color displayed by the raw material, removing the energy to allow the materials within the raw material immediately surrounding the chains of nanocrystals to harden and fix a location of the nanocrystals within the chains, and removing the magnetic field.
摘要:
A process for making cerium-containing oxide nanoparticles includes providing an aqueous reaction mixture containing a source of cerous ion, optionally a source of one or more metal ions (M) other than cerium, a source of hydroxide ion, at least one monoether carboxylic acid nanoparticle stabilizer wherein the molar ratio of said monoether carboxylic acid nanoparticle stabilizers to total metal ions is greater than 0.2, and an oxidant. The cerous ion is oxidized to ceric ion, thereby forming a product dispersion of cerium-containing oxide nanoparticles, optionally containing one or more metal ions (M), Ce1-xMxO2-δ, wherein x has a value from about 0.001 to about 0.95 and δ has a value of about 0.0 to about 0.5. The nanoparticles may have a mean hydrodynamic diameter from about 1 nm to about 50 nm, and a geometric diameter of less than about 45 nm.
摘要:
There is provided a method for efficiently producing an anatase-type titanium oxide sol in an extremely advantageous dispersion state. The method comprises mixing a titanium alkoxide, an organic acid, and a quaternary ammonium hydroxide with water in a molar ratio of the organic acid of 0.4 to 4.0 relative to 1 mol of a titanium atom of the titanium alkoxide and in a molar ratio of the quaternary ammonium hydroxide of 0.8 to 1.9 relative to 1 mol of the organic acid to prepare an aqueous mixed solution having a concentration in terms of TiO2 of 0.5 to 10% by mass; heating the aqueous mixed solution to 50 to 100° C. to remove an alcohol; and subjecting the resulting titanium-containing aqueous solution to a hydrothermal treatment at 110 to 170° C.
摘要:
A process for replacing the continuous phase of a nanoparticle dispersion with a less polar phase, includes filtering the dispersion through a semi-permeable membrane filter to remove the continuous phase, and introducing a less polar phase.
摘要:
A composition contains an additive for assisting with the regeneration of the PF in the form of an organic dispersion of iron particles and a detergent including a polyester quaternary ammonium salt.
摘要:
A composition contains an additive for assisting with regeneration of the PF in the form of an organic dispersion of iron particles in crystallized form and a detergent including a quaternary ammonium salt.
摘要:
An improved process for producing substantially non-polar doped or un-doped cerium oxide nanoparticle dispersions is disclosed. The cerium-containing oxide nanoparticles of an aqueous colloid are transferred to a substantially non-polar liquid comprising one or more amphiphilic materials, one or more low-polarity solvents, and one or more glycol ether promoter materials. The transfer is achieved by mixing the aqueous and substantially non-polar materials, forming an emulsion, followed by a phase separation into a remnant polar solution phase and a substantially non-polar organic colloid phase. The organic colloid phase is then collected. The promoter functions to speed the transfer of nanoparticles to the low-polarity phase. The promoter accelerates the phase separation, and also provides improved colloidal stability of the final substantially non-polar colloidal dispersion. Importantly, the glycol ether promoter reduces the temperature necessary to achieve the phase separation, while providing high extraction yield of nanoparticles into the low-polarity organic phase.
摘要:
A fuel additive composition includes: a) a reverse-micellar composition having an aqueous disperse phase that includes cerium dioxide nanoparticles in a continuous phase that includes a hydrocarbon liquid, a surfactant, and optionally a co-surfactant and b) a reverse micellar composition having an aqueous disperse phase that includes a cetane improver effective for improving engine power during fuel combustion. A method of making a cerium-containing fuel additive includes the step of: a) providing a mixture of a nonpolar solvent, a surfactant, and a co-surfactant; and b) combining the mixture with an aqueous suspension of stabilized cerium dioxide nanoparticles.