Abstract:
Embodiments of synthetic garnet materials having advantageous properties, especially for below resonance frequency applications, are disclosed herein. In particular, embodiments of the synthetic garnet materials can have high Curie temperatures and dielectric constants while maintaining low magnetization. These materials can be incorporated into isolators and circulators, such as for use in telecommunication base stations.
Abstract:
Provided is a non-stick coating including at least one functional decorative layer, including a pigment composition having a reversible variation of optical and/or colorimetric properties when the coating is subjected to a temperature variation between a cold temperature of 0° C. to 40° C. and a hot temperature of 80° C. to 400° C. The pigment composition includes at least one compound of formula Y(3-x)MxFe(5-y)QyO12 in the form of particles, in which M is selected from the lanthanides, alkaline metals, alkaline-earth metals and metalloids with a degree of oxidation (DO) +3; Q is selected from the group made up of the lanthanides, non-metals with degree of oxidation +4, metals with DO +3 or +4, transition metals with DO +2 or +4, alkaline-earth metals and alkaline metals; and wherein x is between 0 and 0.3 and y is between 0 and 3.
Abstract:
A porous metal-oxide composite particle suitable for use as a oxygen reduction reaction or oxygen evolution reaction catalyst and sacrificial support based methods for making the same.
Abstract:
A sintered ferrite magnet comprising main phases of ferrite having a hexagonal M-type magnetoplumbite structure, first grain boundary phases existing between two main phases, and second grain boundary phases existing among three or more main phases, the second grain boundary phases being dispersed in its arbitrary cross section, and the second grain boundary phases having an average area of less than 0.2 μm2, are produced by calcining, pulverizing, molding and sintering raw material powders having the general formula of Ca1-x-yLaxAyFe2n-zCoz, wherein 1−x−y, x, y and z and n representing a molar ratio are in desired ranges; 1.8% or less by mass of SiO2 and 2% or less by mass (as CaO) of CaCO3 being added to a calcined body after calcining and before molding; and the sintering step being conducted with a temperature-elevating speed of 1-4° C./minute in a range from 1100° C. to a sintering temperature, and a temperature-lowering speed of 6° C./minute or more in a range from the sintering temperature to 1100° C.
Abstract:
The present invention provides an electrocatalytic material and a method for making an electrocatalytic material. There is also provided an electrocatalytic material comprising amorphous metal or mixed metal oxides. There is also provided methods of forming an electrocatalyst, comprising an amorphous metal oxide film.
Abstract:
A manufacturing method of a fibrous perovskite-type oxide catalyst includes: a first preparing step; a jetting step; a heating step; and an impregnating step. The first preparing step prepares a first solution by mixing metal salts containing La, Sr, Fe, Co and O elements, a first polymer, a metal salt containing a Zn element and a first solvent. The jetting step jets the first solution by using an electrospinning method to produce a precursor fiber. The heating step heats the precursor fiber to produce a perovskite-type oxide mixed with a Zn oxide. The impregnating step impregnates the perovskite-type oxide with an alkaline solution to remove the Zn oxide.
Abstract:
A compound or a pigment comprising a compound where there is simultaneous substitution of more or more elements onto both the A and B sites of a pyrochlore lattice or a lattice related to a pyrochlore. The pigment comprises a compound with the formula of AyA′y′BxB′x′Zp. Elements A and A′ have a valence of 1, 2, or 3; and are selected from the elements of groups 1, 2, 12, 13, 14, 15, and the first row of transition metals, excluding H, Pb, Cd, Hg, N, As, and Tl. Elements B and B′ have a valence of 3, 4, 5, or 6; and are selected from the elements of the first, second, or third row of transition metals, groups 13, 14, and 15, excluding V, C, Pb, and Tl. Element Z is selected from O, F, N, a chalcogen, S, Se, hydroxide ion, and mixtures thereof.
Abstract:
An object of the present invention is to provide a ferrite magnetic material which can provide a permanent magnet retaining high Br and HcJ as well as having high Hk/HcJ. The ferrite magnetic material according to a preferred embodiment is a ferrite magnetic material formed of hard ferrite, wherein a P content in terms of P2O5 is 0.001% by mass or more.
Abstract translation:本发明的目的是提供一种能够提供保持高Br和HcJ的永磁体以及具有高Hk / HcJ的铁氧体磁性材料。 根据优选实施方案的铁氧体磁性材料是由硬质铁氧体形成的铁氧体磁性材料,其中以P 2 O 5计的P含量为0.001质量%以上。
Abstract:
The present invention refer to a innovative process for obtaining nanoparticulate magnetic ferrites, at low temperatures, simple or mixed, functionalized by organic molecules, for dispersion of these nanoparticles in polar or nonpolar media, and the same particles dispersed in a liquid medium, also known as ferrofluids. The present invention enables obtaining both simple ferrites (MFe2O4 or MFe12O19) and mixed ferrites (Nx M(1-x) Fe2O4 or N1-Y Mx+Y Fe(2-x) O4; as example) where M and N can be metals, such as Sm, La, Bi, Ba, Mo, Sr, Ni, Fe, Mn, Cr, etc., through the coprecipitation method, functionalized by organic molecules containing carboxylic groups, which are polymers, or long chain acids or short chain acids, containing mono, di or tricarboxylic groups and/or alcohols, whose dispersion in polar or nonpolar media is improved. The present invention enables also obtaining ferrofluids, through the mixture of the obtained magnetic particles with an appropriate liquid carrier. The substitution of some elements in the ferrites may yield specific mechanical, optical and/or magnetic properties.
Abstract translation:本发明涉及用于在低温下简单或混合获得由有机分子官能化的纳米颗粒磁性铁氧体,用于在极性或非极性介质中分散这些纳米颗粒的分散在液体介质中的同样的颗粒的创新方法,也已知 作为铁磁流体。 本发明能够获得简单铁氧体(MFe2O4或MFe12O19)和混合铁氧体(Nx M(1-x)Fe 2 O 4或N 1 -Y M x + Y Fe(2-x)O 4)作为实例),其中M和N可以是金属 通过共聚沉淀法制得的Sm,La,Bi,Ba,Mo,Sr,Ni,Fe,Mn,Cr等,由聚合物或长链酸或短链的含有羧基的有机分子官能化 酸,其包含单极,二或三羧酸基团和/或醇,其在极性或非极性介质中的分散性得到改善。 本发明还可以通过所获得的磁性颗粒与合适的液体载体的混合物获得铁磁流体。 铁氧体中一些元素的取代可以产生特定的机械,光学和/或磁性。
Abstract:
The present invention provides an electrocatalytic material and a method for making an electrocatalytic material. There is also provided an electrocatalytic material comprising amorphous metal or mixed metal oxides. There is also provided methods of forming an electrocatalyst, comprising an amorphous metal oxide film.