Abstract:
A wireline clean-out tool including a first opening and a second opening at or near a free-end portion. The first opening takes in debris from a wellbore, the second opening ejects fluid into the wellbore. A housing defines a first flow path from the first opening at the free-end portion to an opposite end portion of the housing and a second flow path from the opposite end portion to the second opening at the free-end portion. The flow paths couple with each other at the opposite end portion. A collection chamber is in the first flow path for collecting debris during operation. A progressive cavity pump with hollow rotors is placed inside the housing at a predefined distance from the free-end portion being configured for operating on the first flow path while the hollow rotor forms part of the second flow path.
Abstract:
An air purifier having a polygonal casing defining one or more inside corners, a cylindrical air filter extending along a center axis within the polygonal casing with a space formed between a radially outwards facing surface of the filter and at least one of the one or more the inside corners of the casing, and a filter cleaner at least partly located in the space. The filter cleaning has a cleaning member, a gear mechanism, at least one UV light source, a motor configured to drive the gear mechanism to thereby drive the radially outwards facing surface of a cylindrical air filter past the cleaning member and the at least one UV light source, and a filter cleaner housing encasing the motor, the cleaning member and the gear mechanism.
Abstract:
Cross-flow filtration systems and corresponding methods for separation particulate matter from liquids. A representative system includes a cross-flow filtration zone (24) in fluid communication with a particulate settling zone (30) and further includes a fluid inlet (14) in fluid communication with one of the zones and a process fluid outlet (20) and in fluid communication with the other zone. A fluid treatment pathway (28) extends from the fluid inlet (14), through the cross-flow filtration and particulate settling zones (24, 30) to the process fluid outlet (20). A filter assembly (26) is located within the cross-flow filtration zone (24) and comprises a membrane surface (44) that isolates a filtrate chamber (46) from the fluid treatment pathway (28), and the filtrate chamber (46) is in fluid communication with a filtered fluid outlet (16). A recirculation pump (Z) in fluid communication with the process fluid outlet (20) and fluid inlet (14). A pressurizable recirculation loop (A) comprises the fluid treatment pathway (28) and recirculation pump (Z) and the recirculation pump (Z) is adapted for driving pressurized through the recirculation loop (A). A feed pump (Y) is adapted to introduce feed liquid into the system (10); and an effluent outlet (18) in fluid communication with the particulate settling zone (30). The feed pump (Y), effluent outlet (18) and filtered fluid outlet (16) reside outside of the recirculation loop (A).
Abstract:
A compact, piston-driven water filtration system with annular cleaning device/brush. The filter apparatus operates based on a piston-driven pressure system where the piston is threadably mated to a water reservoir. Threading of the piston forces a sleeve connected thereto within the reservoir to force water through any suitable water filter (e.g. carbon-based, ceramic, micro- and/or nano-membrane materials) on the opposite side of the reservoir from the threadably-mated piston within the reservoir. The sleeve connected to the piston within the interior of the reservoir includes a cleaning device (e.g., brush, scraper, pad, etc.) on a distal end of the sleeve inside the water reservoir. The annular brush has an inner diameter smaller than that of the sleeve, such that as the piston is threaded into and out of the reservoir, the sleeve moves toward, over, and away from the filter, and the brush scrapes/scrubs/cleans the exterior of the filter for cleansing.
Abstract:
A method and system for treating oilfield produced water is disclosed. The method includes passing oilfield produced water through a chain of filters, first filter configured to filter particles of a size larger than 10 μm from the water, a second filter configured to filter remaining particles of a size larger than 2 μm from the water and a third filter configured to filter remaining particles of a size larger than 0.5 μm from the water and automatically cleaning at least one of the filters.
Abstract:
Cross-flow filtration systems and corresponding methods for separation particulate matter from liquids. A representative system includes a cross-flow filtration zone (24) in fluid communication with a particulate settling zone (30) and further includes a fluid inlet (14) in fluid communication with one of the zones and a process fluid outlet (20) and in fluid communication with the other zone. A fluid treatment pathway (28) extends from the fluid inlet (14), through the cross-flow filtration and particulate settling zones (24, 30) to the process fluid outlet (20). A filter assembly (26) is located within the cross-flow filtration zone (24) and comprises a membrane surface (44) that isolates a filtrate chamber (46) from the fluid treatment pathway (28), and the filtrate chamber (46) is in fluid communication with a filtered fluid outlet (16). A recirculation pump (Z) in fluid communication with the process fluid outlet (20) and fluid inlet (14). A pressurizable recirculation loop (A) comprises the fluid treatment pathway (28) and recirculation pump (Z) and the recirculation pump (Z) is adapted for driving pressurized through the recirculation loop (A). A feed pump (Y) is adapted to introduce feed liquid into the system (10); and an effluent outlet (18) in fluid communication with the particulate settling zone (30). The feed pump (Y), effluent outlet (18) and filtered fluid outlet (16) reside outside of the recirculation loop (A).
Abstract:
A piston pressurized water filter activated by the user or external source. The water filter assembly includes a hollow cylindrical water reservoir, a hollow cylindrical piston threaded into the top of the water reservoir, and a water filter threaded into the bottom of the water reservoir. The interior of the water reservoir is sealed by the piston and water filter. When the water reservoir is filled with unfiltered water, the piston can be threaded down into the water reservoir to create sufficient pressure on the unfiltered water and force the water into the water filter. The water filter can include any combination of carbon, ceramic or other filtering material in a block or disk form. Water is forced into the water filter, through the carbon or ceramic filter mass, and into a container that may or may not be coupled to the water filter.