Abstract:
Disclosed is the use of a separation agent including fibril cellulose for phase separation, as well as to a method for the separation of at least one liquid phase from at least one phase selected from a second liquid phase, solid phase and semi-solid phase, where the method includes the steps of incorporating a separation agent including fibril cellulose to a mixture where separation of the phases is desired, followed by formation of phases and removing the phases.
Abstract:
A method for remediating Frac water and other emulsions created during hydraulic fracturing includes storing contaminated Frac water in a first collection unit, operating at least one pumping unit to pump a portion of the contaminated Frac water, and storing remediated Frac water in a second collection unit. A microwave separation technology (“MST”) unit, an ultra-violet light remediation (“UVLR”) unit, and a chemical additive unit are used to reduce contamination levels of the contaminated Frac water. The MST unit can work alone, or in combination with the UVLR unit, the chemical additive unit, or both, to further reduce contamination levels of the contaminated Frac water. A system operating according to the method can be deployed at an onsite drilling facility or at a centralized offsite location. By reusing remediated Frac water, entities can realize significant cost savings and better environmental compliance.
Abstract:
Methods are provided for vapor deposition coating of hydrophobic materials and applications thereof. The method for making a hydrophobic material includes providing a natural mineral, providing a silicone-based material, heating the silicone-based material to release vaporous molecules of the silicone-based material, and depositing the vaporous molecules of the silicone-based material to form a layer of the silicone-based material on surfaces of the natural mineral.
Abstract:
Methods are provided for vapor deposition coating of hydrophobic materials and applications thereof. The method for making a hydrophobic material includes providing a natural mineral, providing a silicone-based material, heating the silicone-based material to release vaporous molecules of the silicone-based material, and depositing the vaporous molecules of the silicone-based material to form a layer of the silicone-based material on surfaces of the natural mineral.
Abstract:
The invention provides systems and methods for removing a target oil from an aqueous fluid stream using a capture medium. In embodiments, the capture medium can comprise an anchor substrate and a modifier technology supported on the anchor substrate, where the modifier technology complexes with the oil to form a removable complex.
Abstract:
The invention can be used to improve the yield of degraded heat transfer oil (1) recovered from a solar thermal facility, comprising the successive separation of heavy components (4) (ortho-, meta- and para-terphenyl) and light components (7) (phenol and benzene). The plant comprises: an air-cooled cooler (2) which cools the degraded heat transfer oil (1) to obtain a cooled oil (12); a distillation column (3) which separates the heavy components (4) and a vapour (15) of light components (7) plus oil from the cooled heat transfer oil (12); and a rectifier (6) which separates the light components (7) and the regenerated oil (17) from the vapour (15). The method comprises the cooling of the degenerated heat transfer oil (1) in the air-cooled cooler (2), the separation of the heavy components (4) in the distillation column (3), and the separation of the light components (7) and the regenerated oil (17) in the rectifier (6).
Abstract:
A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.
Abstract:
A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.
Abstract:
A method and a system for phase inversion of a dispersion are disclosed, the dispersion comprising a first fluid, said first fluid forming a disperse phase and a second fluid, said second fluid forming a continuous phase. The dispersion is supplied in a fluid supply device to a phase inversion means. Thereby the first fluid is transformed from the disperse phase into the continuous phase and the second fluid is transformed from the continuous phase into the disperse phase. The phase inversion means comprises an element providing a fluid contacting surface for coalescence in a direction of flow.
Abstract:
A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water. The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.