Abstract:
A system is provided for controlling fluid flow in a flow circuit of the type including at least two flexible containers which are fluidly connected by a conduit. The system includes a pressure chamber having an interior which receives one of the containers of the flow circuit. The pressure chamber has at least one port which communicates between the interior of the pressure chamber and the outside environment and receives at least a portion of the conduit of the flow circuit. The pressure chamber also includes a pressure/vacuum source for increasing the pressure in the interior of the pressure chamber above atmospheric pressure and decreasing the pressure in the interior of the pressure chamber below atmospheric pressure. The pressure chamber may include other elements, such as interface detectors, clamping devices, sealing devices, and access devices for automatically processing fluid, such as separated blood.
Abstract:
A system for forming a fluid connection includes a first connector and a second connector. Both connectors include a tubular body having a membrane mounted on a distal end thereof. A support member facilitates the coupling of the connectors together so that the membranes are abutted together. Radiant energy is applied to the abutted membranes so as to first sterilize the membranes and then melt the membranes so that a passage is formed therethrough.
Abstract:
A system for forming a fluid connection includes a first connector (12) and a second connector (14). Both connectors include a tubular body (18,18′) having a membrane (19,19′) mounted on a distal end (27) thereof. A support member (16) or other fastener (214,220) facilitates the coupling of the connectors together so that the membranes are abutted together. Radiant or other form of energy is applied to the abutted membranes so as to sterilize the membranes and melt the membranes so that a passage is formed therethrough.
Abstract:
A sterilization system seals a first end portion of a first tube and a second end portion of a second tube under sterile conditions. The sterilization system includes a sterilization chamber and an electron gun which generates a distribution of electrons in the sterilization chamber. The sterilization system further includes a spindle and a holder which places and rotates a connector in the distribution of electrons. The sterilization system further includes first and second tube holders each having curved walls movably coupled to the sterilization chamber to move between a first position where the respective end portion is separated from the connector and a second position where the respective end portion is coupled to the connector. Each curved wall has a shape such that x rays generated within the sterilization chamber undergo at least three interactions with the curved walls before propagating outside the tube holders.
Abstract:
A process, apparatus and system for making a sterile connection between two thermoplastic resin tubes is disclosed. Side sections of the adjacently placed tubes are melted by passing a heated elongated body therethrough to form a molten seal between a surface of the heated body and the adjacent side sections, thereby providing a seal between the interior and exterior of said tubes. The resulting molten tube sections are urged together as they are slid off an end of the elongated body. As the thermoplastic resin cools a sterile weld is formed.
Abstract:
A connector member for a fluid flow path is provided which comprises a transparent housing enclosing an opaque barrier membrane or wall portion blocking flow through the flow path. The barrier membrane is adapted to be openable by exposure to radiant energy from the exterior through the transparent housing. In accordance with this invention, the barrier membrane is made of a predominantly crystalline plastic material, and, accordingly, exhibits a relatively sharp melting point for improved opening characteristics upon exposure to the radiant energy.
Abstract:
A luer connector including a rigid housing having a first end and a second end. The housing further including a rigid tubular male portion at the first end, a rigid tubular female portion at the second end, and a longitudinal opening therethrough. The male portion is configured to be engageable with a female connector. The female portion is configured to be engageable with a male connector and to prevent the disengagement of the male connector from the female portion. In some embodiments, the female portion is configured to maintain a fixed rotational position when the male connector is being threaded therewith, but to rotate with the male connector once the male connector has become fully engaged with the female portion so as to prevent the male connector from becoming unthreaded from the female portion.
Abstract:
Delivering a blood processing solution to blood in a blood bag includes coupling a first tube to a vented spike at one end and to a Y-shaped tube connector at a second end. An in-line microbiotic barrier filter is coupled to the first tube between its ends. A second tube is coupled to a transfer bag at one end and to the Y-shaped tube connector at its other end. A third tube is coupled to the output of the Y-shaped tube connector and sealed at its distal end. The blood bag includes a fourth tube that is sealed at a distal end. The third tube is welded to the fourth tube using a sterile tubing welder, wherein a functionally-closed, sterile flow path through which the blood processing solution can flow into the blood bag is maintained.
Abstract:
Fluid flow conduits and apparatus and methods for joining the conduits, preferably in a sterile manner, are disclosed. Each conduit has a polymeric open end that is sealed by a sealing member that may include a heating element. The polymeric end material is melted, the sealing members are moved to expose the melted open ends of the conduits and the ends are brought together to form a fused or welded connection between the conduits.
Abstract:
Some embodiments comprise a connector including a rigid housing having a first end and a second end. A second member can be positioned at a second end portion of the housing and be engageable with a second device. The second member can have a body portion having a first body portion, a second body portion, and a flow lumen extending axially through the body portion, an annular covering portion extending in a radial direction away from the body portion, a receiving portion extending away from the covering portion in an axial direction, and at least one protrusion extending radially away from an outside surface of the body portion. In some embodiments, the second member can be supported by the housing such that, in an assembled state, the first body portion is positioned within the housing and such that the annular covering portion and the second body portion are positioned outside the housing.