摘要:
A health care and/or entertainment device protective film may be configured to contact human skin, e.g., to limit the transmission of infection by bacteria, fungi, protozoa, prions, and/or viruses. The film may be formed as a nanocomposite film including at least 75 wt. %, relative to total organic matrix weight, of polyethylene, silver particles, and TiO2 particles, wherein the silver particles and TiO2 particles are distributed within and/or on an outer surface of the polyethylene, wherein the silver particles have a size of 1 to 1,000 nm, and wherein the TiO2 particles have a size of 1 to 50 nm. Such films may be applied to health care and/or entertainment devices, including virtual reality googles.
摘要:
A health care and/or entertainment device protective film may be configured to contact human skin, e.g., to limit the transmission of infection by bacteria, fungi, protozoa, prions, and/or viruses. The film may be formed as a nanocomposite film including at least 75 wt. %, relative to total organic matrix weight, of polyethylene, silver particles, and TiO2 particles, wherein the silver particles and TiO2 particles are distributed within and/or on an outer surface of the polyethylene, wherein the silver particles have a size of 1 to 1,000 nm, and wherein the TiO2 particles have a size of 1 to 50 nm. Such films may be applied to health care and/or entertainment devices, including virtual reality googles.
摘要:
The present invention provides an orthopedic implant comprising a continuous reinforced composite filament in a freely predetermined fiber orientation in multiple continuous successive layers, wherein the continuous reinforced composite filament comprises a bioabsorbable polymer matrix and a continuous bioabsorbable reinforcing fiber or fiber bundle, and whereby the continuous bioabsorbable reinforcing fiber or fiber bundle of consecutive layers at least partly intermingles and/or intertwines forming a three dimensionally interlocked continuous fiber structure.
摘要:
The present disclosure relates to a composite material, in particular a composite material of metals, a process for producing a composite material, and a medical device, in particular an implant, based on the composite material. The composite material comprises at least 5 vol-% of Fe and at least 1 vol-% of Mg or Zn, wherein the composite material comprises a Mg or Zn phase and an Fe phase, wherein the average size of the Mg or Zn phase in at least one dimension is less than 20 μm, in particular less than 10 μm. The medical device, in particular an implant, may be suitable for fixing of bone fractures (as well as fractions of a tendon or a ligament, etc.) and/or corrections and may be capable of exhibiting a targeted failure representing a complete paradigm shift in the treatment of bone fractures and the like.
摘要:
The invention relates to a composite material that comprises at least one magnesium component, whereby the magnesium component consists of pure magnesium or a magnesium-calcium alloy or a magnesium-calcium-X alloy, whereby X is another biodegradable element. The composite material also contains at least one organic anti-infective agent having a solubility in water at room temperature of less than 10 grams per liter.
摘要:
A method for controlling generation of biologically desirable voids in a composition placed in proximity to bone or other tissue in a patient by selecting at least one water-soluble inorganic material having a desired particle size and solubility, and mixing the water-soluble inorganic material with at least one poorly-water-soluble or biodegradable matrix material. The matrix material, after it is mixed with the water-soluble inorganic material, is placed into the patient in proximity to tissue so that the water-soluble inorganic material dissolves at a predetermined rate to generate biologically desirable voids in the matrix material into which bone or other tissue can then grow.
摘要:
A bioerodible endoprosthesis includes a composite including a matrix comprising a bioerodible magnesium alloy and a plurality of ceramic nanoparticles within the matrix. The bioerodible magnesium alloy has a microstructure including equiaxed Mg-rich solid solution-phase grains having an average grain diameter of less than or equal to 5 microns. The microstructure can be produced by one or more equal-channel high-strain processes.
摘要:
A medical implant includes a metal composite that contains a cellular nanomatrix having a metallic nanomatrix material and a metal matrix disposed in the cellular nanomatrix, the medical implant being configured to disintegrate in response to contact with a fluid. A method for repairing tissue includes disposing an implant in a patient, the implant including a metal composite which contains: a cellular nanomatrix having a metallic nanomatrix material; and a metal matrix disposed in the cellular nanomatrix; contacting tissue of the patient with the implant, the tissue being in need of repair; and non-operatively removing the implant to repair the tissue.
摘要:
A titanium based, ceramic reinforced alloy ingot for use in producing medical implants. An ingot is formed from an alloy having comprising from about 5 to about 35 wt. % niobium, from about 0.5 to about 3.5 wt. % silicon, and from about 61.5 to about 94.5 wt. % of titanium. The alloy has a hexagonal crystal lattice α phase of from about 20 vol % to about 70 vol %, and a cubic body centered β crystal lattice phase of from about 30 vol. % to about 80 vol. %. The ingot has an ultimate tensile strength of about 940 MPa or more, and a Young's modulus of about 150 GPa or less. A molten substantially uniform admixture of a niobium, silicon, and titanium alloy is formed, cast into a shape, and cooled into an ingot. The ingot may then be formed into a medical implant and optionally annealed.
摘要:
A medical implant includes a metal composite that contains a cellular nanomatrix having a metallic nanomatrix material and a metal matrix disposed in the cellular nanomatrix, the medical implant being configured to disintegrate in response to contact with a fluid. A method for repairing tissue includes disposing an implant in a patient, the implant including a metal composite which contains: a cellular nanomatrix having a metallic nanomatrix material; and a metal matrix disposed in the cellular nanomatrix; contacting tissue of the patient with the implant, the tissue being in need of repair; and non-operatively removing the implant to repair the tissue.