摘要:
A titanium based, ceramic reinforced alloy ingot for use in producing medical implants. An ingot is formed from an alloy having comprising from about 5 to about 35 wt. % niobium, from about 0.5 to about 3.5 wt. % A silicon, and from about 61.5 to about 94.5 wt. % of titanium. The alloy has a hexagonal crystal lattice a phase of from about 20 vol % to about 70 vol %, and a cubic body centered 13 crystal lattice phase of from about 30 vol. % to about 80 vol. %. The ingot has an ultimate tensile strength of about 940 MPa or more, and a Young's modulus of about 150 GPa or less. A molten substantially uniform admixture of a niobium, silicon, and titanium alloy is formed, cast into a shape, and cooled into an ingot. The ingot may then be formed into a medical implant and optionally annealed.
摘要:
A titanium based, ceramic reinforced alloy ingot for use in producing medical implants. An ingot is formed from an alloy having comprising from about 5 to about 35 wt. % niobium, from about 0.5 to about 3.5 wt. % silicon, and from about 61.5 to about 94.5 wt. % of titanium. The alloy has a hexagonal crystal lattice α phase of from about 20 vol % to about 70 vol %, and a cubic body centered β crystal lattice phase of from about 30 vol. % to about 80 vol. %. The ingot has an ultimate tensile strength of about 940 MPa or more, and a Young's modulus of about 150 GPa or less. A molten substantially uniform admixture of a niobium, silicon, and titanium alloy is formed, cast into a shape, and cooled into an ingot. The ingot may then be formed into a medical implant and optionally annealed.
摘要:
The present invention involves a method for deposition of thin film and electrochemically active layered coatings for use as components including electrodes and solid electrolytes for electrochemical generation and storage devices including batteries, supercapacitors, fuel cell, solar cell and the like. According to the present invention, evaporation of the starting materials in a reactive gaseous medium is accomplished by means of a gas discharge electron gun with a cold cathode. The electron beam has a given specific power corresponding to the evaporation temperature of the starting material. Deposition of the evaporated starting material onto the substrate in a pressure controlled reactive gaseous medium is carried out at a controlled temperature and rate of condensate formation. This temperature is dependant on the partial pressure of the reactive gas. High condensation rates can be achieved, and the resulting condensed coating materials can have high density, making them ideal for use as electrodes in electrochemical generation and storage devices.
摘要:
Implantable medical devices made from a single beta phase Tantalum alloy utilizing Titanium as an alloying agent that are biocompatible, radiopaque and visible under x-ray and fluoroscopy, the alloy having mechanical properties that allow it to be machined by conventional, machining methods for forming the devices, and a method for making the alloy. The alloy is between approximately 10 percent and 25 percent Ti by weight and preferably has a density of 12 g/cm3 or greater.