摘要:
A method of forming an ohmic contact on a substrate is described. The method includes depositing a set of silicon particles on the substrate surface. The method also includes heating the substrate in a baking ambient to a baking temperature and for a baking time period in order to create a densified film ink pattern. The method further includes exposing the substrate to a dopant source in a diffusion furnace with a deposition ambient, the deposition ambient comprising POCl3, a carrier N2 gas, a main N2 gas, and a reactive O2 gas at a deposition temperature and for a deposition time period, wherein a PSG layer is formed on the substrate surface. The method also includes heating the substrate in a drive-in ambient to a drive-in temperature and for a drive-in time period; and depositing a silicon nitride layer. The method further includes depositing a set of metal contacts on the set of silicon particles; and heating the substrate to a firing temperature and for a firing time period.
摘要:
A ceramic boron-containing dopant paste is disclosed. The ceramic boron-containing dopant paste further comprising a set of solvents, a set of ceramic particles dispersed in the set of solvents, a set of boron compound particles dispersed in the set of solvents, a set of binder molecules dissolved in the set of solvents. Wherein, the ceramic boron-containing dopant paste has a shear thinning power law index n between about 0.01 and about 1.
摘要:
A method of printing an ink on a wafer surface configured with a set of non-rounded peaks and a set of non-rounded valleys is disclosed. The method includes exposing the wafer including at least some non-rounded peaks and at least some of the non-rounded valleys in a region to an etchant. The method further includes depositing the ink on the region, wherein a set of rounded peaks and a set of rounded valleys are formed.
摘要:
Disclosed are methods of forming multi-doped junctions, which utilize a nanoparticle ink to form an ink pattern on a surface of a substrate. From the ink pattern, a densified film ink pattern can be formed. The disclosed methods may allow in situ controlling of dopant diffusion profiles.
摘要:
A method for selectively etching a silicon-containing film on a silicon substrate is disclosed. The method includes depositing a silicon-containing film on the silicon substrate. The method further includes baking the silicon-containing film to create a densified silicon-containing film, wherein the densified film has a first thickness. The method also includes exposing the silicon substrate to an aqueous solution comprising NH4F and HF in a ratio of between about 6:1 and about 100:1, at a temperature of between about 20° C. and about 50° C., and for a time period of between about 30 seconds and about 5 minutes; wherein between about 55% and about 95% of the densified silicon-containing film is removed.
摘要:
A method of forming a multi-doped junction is disclosed. The method includes providing a substrate doped with boron atoms, the substrate comprising a front substrate surface. The method also includes depositing an ink on the front substrate surface in an ink pattern, the ink comprising a set of nanoparticles and a set of solvents; and heating the substrate in a baking ambient at a baking temperature and for a baking time period wherein a densified ink layer is formed. The method further includes exposing the substrate to a phosphorous dopant source at a drive-in temperature and for a drive-in time period.
摘要:
The present invention provides photoactive materials that include quantum-confined semiconductor nanostructures in combination with non-quantum confined and bulk semiconductor structures to enhance or create a type II band offset structure. The photoactive materials are well-suited for use as the photoactive layer in photoactive devices, including photovoltaic devices, photoconductors and photodetectors.
摘要:
A method of forming an ohmic contact on a substrate is described. The method includes depositing a set of silicon particles on the substrate surface. The method also includes heating the substrate in a baking ambient to a baking temperature and for a baking time period in order to create a densified film ink pattern. The method further includes exposing the substrate to a dopant source in a diffusion furnace with a deposition ambient, the deposition ambient comprising POCl3, a carrier N2 gas, a main N2 gas, and a reactive O2 gas at a deposition temperature and for a deposition time period, wherein a PSG layer is formed on the substrate surface. The method also includes heating the substrate in a drive-in ambient to a drive-in temperature and for a drive-in time period; and depositing a silicon nitride layer. The method further includes depositing a set of metal contacts on the set of silicon particles; and heating the substrate to a firing temperature and for a firing time period.
摘要:
A particle collection apparatus is disclosed. The apparatus includes a baghouse housing comprising an entrance port, a collection port, a baghouse configured between the entrance port and the collection port, and a vacuum port coupled to the baghouse. The apparatus also includes a collection mechanism coupled to the collection port; and, a compression mechanism coupled to the baghouse.
摘要:
A solar cell, comprising: a doped silicon substrate, the silicon substrate comprising a front surface and a rear surface; a front phosphorous diffusion layer formed on the front surface; a front anti-reflective layer formed on the front phosphorous diffusion layer; a front metal electrode on the front surface in ohmic contact with the front phosphorous diffusion layer through the front anti-reflective layer; a rear passivation layer formed on the rear surface; a rear metal electrode in a pattern on the rear surface passing through the rear passivation layer; and a rear p+ diffusion area on the rear surface between the rear passivation layer and a boron-doped region of the silicon substrate, the rear p+ diffusion area surrounding the rear metal electrode.