Abstract:
Providing a fluid dynamic bearing device, wherein the outer member comprises a member formed by a pressing process on a plate member, the radial bearing surface and at least the one of the thrust bearing surfaces of the outer member being formed by the pressing process, and wherein at least a part of the inner member, which forms the radial bearing surface and the thrust bearing surfaces of the inner member, is made of a sintered metal.
Abstract:
A fluid dynamic bearing device including: a bearing sleeve fixed to an inner periphery of a housing; a shaft member removably inserted along an inner periphery of the bearing sleeve; an annular member having an inner peripheral surface for defining a radial gap together with an outer peripheral surface of the shaft member; and radial bearing portions and a thrust bearing portion for supporting the shaft member. At least the radial bearing gap at each of the radial bearing portions, and a bottom gap having the thrust bearing portion received therein are filled with lubricating oil. A void section is formed in an interior space of the housing. Assuming that d1 represents a gap width of the radial bearing gap and d2 represents a gap width of the radial gap, a relationship of 30d1≦d2≦250d1 is satisfied.
Abstract:
A lubricating coating which can prevent the occurrence of galling even when makeup is carried out with a high torque and which has excellent rust preventing properties is formed on the contact surfaces of a pin and/or a box of a tubular threaded joint. The lubricating coating contains copolymer particles made from particles of an acrylic-silicone copolymer with an average particle diameter of 10-50 μm dispersed in a highly viscous matrix made from a mixture of a rosin-based substance selected from rosin and its derivatives, wax, a metal soap, and a basic metal salt of an aromatic organic acid (such as highly basic Ca sulfonate).
Abstract:
A lubricating coating which can prevent the occurrence of galling even when makeup is carried out with a high torque and which has excellent rust preventing properties is formed on the contact surfaces of a pin and/or a box of a tubular threaded joint. The lubricating coating contains copolymer particles made from particles of an acrylic-silicone copolymer with an average particle diameter of 10-50 μm dispersed in a highly viscous matrix made from a mixture of a rosin-based substance selected from rosin and its derivatives, wax, a metal soap, and a basic metal salt of an aromatic organic acid (such as highly basic Ca sulfonate).
Abstract:
A digital camera is provided that includes a camera body and a monitor device. The camera body includes an imaging module, an image stabilization module, a first connector half and a first wireless communication module. The monitor device is detachable from the camera body and includes a monitor, a second connector half complemental to the first connector half and a second wireless communication module complemental to the first wireless communication module. An operation of the image stabilization module is suspended when monitor device is detached from the camera body.
Abstract:
The torque tool device includes a torque tool and an information processing terminal. The torque tool is capable of measuring the torque value at which a bolt or the like was tightened and then transmitting the measured torque value via wireless communication unit and the information processing terminal has information processing unit receiving the measured torque value and determining whether the torque value is acceptable.
Abstract:
Fine particles (6) are retained by an electroformed portion (4) in a dispersed state, and the fine particles (6) exposed from an outer peripheral surface (4a2) of the electroformed portion (4) are molten so as to form micro projections (60) integrated with a resin portion (5). The micro projections (60) enters into fine-particle traces (4c) formed in the electroformed portion (4) to exert an anchor effect, to thereby increase a fixation force between the resin portion (5) and the electroformed portion (4).
Abstract:
An apparatus 1 for evaluating the performance of a threaded joint for oil country tubular goods using a first steel pipe P1 and a second steel pipe P2 has a base 2 which holds a first steel pipe P1 in an upright position with an upper end of the first steel pipe P1 extending above the base and the remainder partly disposed under ground. A support member 3 mounted on the base 2 extends alongside the first steel pipe P1. A second steel pipe P2 is suspended above the first steel pipe P1 by a suspending mechanism 4. A threaded joint can be connected and disconnected by first and second tongs 5 and 6 which rotate the second steel pipe P2 with respect to the first steel pipe P1. A stabilizer 7 mounted on the support member 3 can limit the radius of gyration of the second steel pipe P2.
Abstract:
A tray keying mechanism is mounted on a backplane inside a modular chassis and has a protrusion that stands out like a post for each of several equipment bays. A modular tray can be inserted into each of the equipment bays, but it will not be allowed to be fully inserted and to engage the electrical connectors on the backplane if the corresponding post meets an obstruction on the rear apron of the tray. If the particular tray is the correct type, and is not upside down, the post will encounter no obstructions during the insertion of the tray, and the electrical connectors will be allowed to engage. In one embodiment, the keying mechanism comprises a bracket of molded plastic that fits all around the several connectors on the backplane, and could be patterned to fit an already existing and in-service backplane and chassis.
Abstract:
Provided is a shaft member for a fluid dynamic bearing device, which is excellent in wear resistance and which can exert a high dynamic pressure effect. A shaft material (11) is rolled to form a recess (7) for causing a dynamic pressure effect of a lubricating oil in a radial bearing clearance (6). In this case, in a surface layer portion (14) of the recess (7) to be formed in an outer peripheral surface (11a) of the shaft material (11), a first hardened layer (14a) is formed by rolling. At the same time, also in a surface layer portion (15) of a surrounding region (8) of the recess (7), a first hardened layer (15a) is formed by rolling at a partial region thereof. After the recess (7) is formed by the rolling, barreling is applied to the shaft material (11). As a result, an outermost surface layer portion of the surface layer portion (15) is formed with a second hardened layer (15b) by the barreling. A hardness of the second hardened layer (15b) formed in the surrounding region (8) is higher by 50 Hv or more and 200 Hv or less than that of the first hardened layer (14a) formed in the recess (7).