Abstract:
Provided is a sintered bearing formed mainly of an iron structure (33) and a copper structure (31) which are formed of a partially diffusion-alloyed powder (11) of an iron powder (12) and a copper powder (13). The sintered bearing includes a copper structure (31d) formed of a granular elemental copper powder (13′) having a grain diameter of 45 μm or less, the ratio of the copper structure (31d) being 10 mass % or less. With this, a further increase in strength of the sintered bearing can be realized.
Abstract:
A porous gas bearing is disclosed. The porous gas bearing includes a housing having a fluid inlet and an aperture. A porous surface layer is disposed within the housing surrounding the aperture in a circumferential direction. The porous surface layer is in fluid communication with the fluid inlet. A damping system includes a damping system including a biasing member, the biasing member being disposed in a passageway that extends along the longitudinal direction of the aperture and circumferentially about the aperture, wherein the biasing member is arranged radially outward from the porous surface layer.
Abstract:
A sliding bearing device is proposed which comprises a bearing seating having a first sliding surface and a bearing body having a second sliding surface, wherein the bearing body is accommodated by the bearing seating and the first sliding surface and the second sliding surface face each other, wherein the bearing seating and/or the bearing body is made of an open-pore fibre composite material at least in a sliding region which forms the respective sliding surface.
Abstract:
Provided is a sintered bearing (1), including 3 to 12% by mass of aluminum, 0.05 to 0.5% by mass of phosphorus, and the balance including copper as a main component, and inevitable impurities, the sintered bearing (1) having a structure in which an aluminum-copper alloy is sintered with a sintering aid added to raw material powder, a pore (db, do) in a surface layer portion of the sintered bearing (1) being formed smaller than an internal pore (di).
Abstract:
Provided is a sintered bearing formed mainly of an iron structure (33) and a copper structure (31) which are formed of a partially diffusion-alloyed powder (11) of an iron powder (12) and a copper powder (13). The sintered bearing includes a copper structure (31d) formed of a granular elemental copper powder (13′) having a grain diameter of 45 μm or less, the ratio of the copper structure (31d) being 10 mass % or less. With this, a further increase in strength of the sintered bearing can be realized.
Abstract:
A bearing bush 1 for use in a toggle has a cylindrical metallic base material 2 and a solid lubricant 3 embedded in the metallic base material 2, and the metallic base material 2 has dead end grooves 5 formed in a cylindrical inner peripheral surface 4, an annular groove 6 formed in the cylindrical inner peripheral surface 4, and circular holes 7a and 7b as well as 7c and 7d formed in each of a pair of semicylindrical inner peripheral surfaces 4a and 4b adjacent to each other in an axial direction X and two pairs of semicylindrical inner peripheral surfaces 4c and 4d sandwiching the pair of semicylindrical inner peripheral surfaces 4a and 4b in a circumferential direction R and adjacent to each other in the axial direction X in each pair.
Abstract:
A double bearing comprising an inner bearing and an outer bearing, which has a greater oil content than the inner bearing, is used as a bearing for a brushless motor. The inner bearing has an upper bearing part, a lower bearing part, and a central relief part. Gaps are provided between the bearing parts and a bearing housing, along the entire axial length of all of the bearing parts of the inner bearing.
Abstract:
A sintered metal bearing is formed of a porous body formed through sintering of a compact obtained through compression molding of raw-material power. The sintered metal bearing includes a dynamic pressure generating portion formed on an inner peripheral surface, the dynamic pressure generating portion including dynamic pressure generating groove array regions formed continuously to each other in an axial direction of the sintered metal bearing. The dynamic pressure generating groove array regions each include a plurality of dynamic pressure generating grooves arrayed so as to be inclined with respect to a circumferential direction of the sintered metal bearing. An axial dimension of the sintered metal bearing is set to 6 mm or less, and a density ratio of the sintered metal bearing is set to 80% or more and 95% or less.
Abstract:
A sliding bearing assembly for joints of construction equipment can be provided, in which production cost is reduced by decreasing the used amount of Cu and sulfides having high fixability to a matrix are dispersed. The sliding bearing assembly for joints of construction equipment, includes at least a shaft and a bush made of an iron-based sintered material which functions as a sliding bearing, in which the bush has the overall composition of, by mass %, 0.1 to 10% of Cu, 0.2 to 1.2% of C, 0.03 to 0.9% of Mn, 0.36 to 1.68% of S, and the balance of Fe and inevitable impurities, a metal structure has pores dispersed in a matrix mainly including a martensite structure and sulfide particles precipitated and dispersed, and the sulfide particles are dispersed at 1 to 7 volume % in the matrix.
Abstract:
A sintered bearing includes a sintered metal formed by using a metal powder mixture containing copper powder and iron powder. The metal powder mixture contains 80 wt % or more of particles having an average particle diameter of less than 45 μm. The copper powder contains electrolytic copper powder. The electrolytic copper powder contains 40 number % or more of particles having a circularity of 0.64 or more.