Abstract:
The invention comprises capacitors having a capacitor dielectric layer comprising a metal oxide having multiple different metals bonded with oxygen. In one embodiment, a capacitor includes first and second conductive electrodes having a high k capacitor dielectric region positioned therebetween. The high k capacitor dielectric region includes a layer of metal oxide having multiple different metals bonded with oxygen. The layer has varying stoichiometry across its thickness. The layer includes an inner region, a middle region, and an outer region. The middle region has a different stoichiometry than both the inner and outer regions.
Abstract:
Apparatus and systems may comprise electrode structures that include two or more dissimilar and abutting metal layers on a surface, some of the electrode structures separated by a gap; and a polymer-based ferroelectric layer overlying and directly abutting some of the electrode structures. Methods may comprise actions to form and operate the apparatus and systems. Additional apparatus, systems, and methods are disclosed.
Abstract:
The invention comprises integrated circuitry and to methods of forming capacitors. In one implementation, integrated circuitry includes a capacitor having a first capacitor electrode, a second capacitor electrode and a high K capacitor dielectric region received therebetween. The high K capacitor dielectric region has a high K substantially amorphous material layer and a high K substantially crystalline material layer. In one implementation, a capacitor forming method includes forming a first capacitor electrode layer over a substrate. A substantially amorphous first high K capacitor dielectric material layer is deposited over the first capacitor electrode layer. The substantially amorphous high K first capacitor dielectric material layer is converted to be substantially crystalline. After the converting, a substantially amorphous second high K capacitor dielectric material layer is deposited over the substantially crystalline first high K capacitor dielectric material layer. A second capacitor electrode layer is formed over the substantially amorphous second high K capacitor dielectric material layer.
Abstract:
Systems, devices, structures, and methods are described that inhibit dielectric degradation at high temperatures. An enhanced capacitor is discussed. The enhanced capacitor includes a first electrode, a dielectric that includes ditantalum pentaoxide, and a second electrode having a compound. The compound includes a first substance and a second substance. The second electrode includes a trace amount of the first substance. The morphology of the semiconductor structure remains stable when the trace amount of the first substance is oxidized during crystallization of the dielectric. In one embodiment, the crystalline structure of the dielectric describes substantially a (001) lattice plane.
Abstract:
The present invention provides a processing system comprising a remote plasma activation region for formation of active gas species, a transparent transfer tube coupled between the remote activation region and a semiconductor processing chamber, and a source of photo-energy for maintaining activation of the active species or providing photo-energy for a non-plasma species during transfer through the transparent tube to the processing chamber. The source of photo-energy preferably includes an array of UV lamps. Additional UV lamps may also be used to further sustain active species and assist processes by providing additional in-situ energy through a transparent window of the processing chamber. The system can be utilized for processes such as layer-by-layer annealing and deposition and also removal of contaminants from deposited layers.
Abstract:
Undesirable transistor leakage in transistor structures becomes greatly reduced in substrates having a doped implant region formed via pulling back first and second layers of a process stack. A portion of the substrate, which also has first and second layers deposited thereon, defines the process stack. The dopant is selected having the same n- or p-typing as the substrate. Through etching, the first and second layers of the process stack become pulled back from a trench wall of the substrate to form the implant region. Occupation of the implant region by the dopant prevents undesirable transistor leakage because the electrical characteristics of the implant region are so significantly changed, in comparison to central areas of the substrate underneath the first layer, that the threshold voltage of the implant region is raised to be about equivalent to or greater than the substantially uniform threshold voltage in the central area.
Abstract:
In a semiconductor device including a first conductive layer, the first conductive layer is treated with a nitrogen/hydrogen plasma before an additional layer is deposited thereover. The treatment stuffs the surface with nitrogen, thereby preventing oxygen from being adsorbed onto the surface of the first conductive layer. In one embodiment, a second conductive layer is deposited onto the first conductive layer, and the plasma treatment lessens if not eliminates an oxide formed between the two layers as a result of subsequent thermal treatments. In another embodiment, a dielectric layer is deposited onto the first conductive layer, and the plasma treatment lessens if not eliminates the ability of the first conductive layer to incorporate oxygen from the dielectric.
Abstract:
Capacitor structures for use in integrated circuits and methods of their manufacture. The capacitor structures include a bottom electrode, a top electrode and a dielectric layer interposed between the bottom electrode and the top electrode. The capacitor structures further include a metal oxynitride barrier layer interposed between the dielectric layer and at least one of the bottom and top electrodes. Each metal oxynitride barrier layer acts to reduce undesirable oxidation of its associated electrode. Each metal oxynitride barrier layer can further aid in the repairing of oxygen vacancies in a metal oxide dielectric. The capacitors are suited for use as memory cells and apparatus incorporating such memory cells, as well as other integrated circuits.
Abstract:
CMOS image sensors have charge storage capacitors connected to various light sensitive and/or electrical elements. The capacity of the capacitors used for each pixel is tailored to the color to be detected. Charge storage capacitors may be formed entirely over a filed oxide region of the CMOS imager, entirely over an active area of a pixel sensor cell, or partially over a field oxide region and partially over an active pixel area of a pixel sensor cell.
Abstract:
A diffusion barrier layer comprising TiNxBy is disclosed for protection of gate oxide layers in integrated transistors. The diffusion barrier layer can be fabricated by first forming a TiN layer and then incorporating boron into the TiN layer. The diffusion barrier layer can also be fabricated by forming a TiNxBy layer using a TDMAT process including boron. The diffusion barrier layer can also be fabricated by forming a TiNxBy layer using a CVD process. The diffusion barrier layer is of particular utility in conjunction with tungsten or tungsten silicide conductive layers formed by CVD.