Abstract:
A method for installing an RFID tag on shipping articles includes applying a strip of conductive material to the surface of the article and providing an RFID chip having a body, a first bottom conductive point, a second bottom conductive point and a nonconductive fin between the first bottom conductive point and the second bottom conductive point. The fin is received in the shipping article. The RFID chip is attached to the shipping article by inserting the chip onto the strip of conductive material on the shipping article such that the fin severs the strip into a first strip and a second strip. The first bottom conductive point is electrically attached to the first strip and the second bottom conductive point is electrically attached to the second strip.
Abstract:
A method for installing an RFID tag on shipping articles includes applying a strip of conductive material to the surface of the article and providing an RFID chip having a body, a first bottom conductive point, a second bottom conductive point and a nonconductive fin between the first bottom conductive point and the second bottom conductive point. The fin is received in the shipping article. The RFID chip is attached to the shipping article by inserting the chip onto the strip of conductive material on the shipping article such that the fin severs the strip into a first strip and a second strip. The first bottom conductive point is electrically attached to the first strip and the second bottom conductive point is electrically attached to the second strip.
Abstract:
A method and apparatus for bonding integrated circuits uniquely suited to high volume tag production is described, where conductive material of a substrate at the die-attach-area is cut before an IC chip or transponder is placed on the conductive material over the cut and bonded. The apparatus performs the method of placing a first chip on a substrate having a conductive layer, measuring the location of the first chip on the substrate, cutting the conductive layer at a location of an expected subsequently placed chip to form a cut based on the measured location of the first chip, and placing the subsequently placed chip on the substrate over the cut.
Abstract:
A method and apparatus for bonding integrated circuits uniquely suited to high volume tag production is described, where conductive material of a substrate at the die-attach-area is cut before an IC chip or transponder is placed on the conductive material over the cut and bonded. The apparatus performs the method of placing a first chip on a substrate having a conductive layer, measuring the location of the first chip on the substrate, cutting the conductive layer at a location of an expected subsequently placed chip to form a cut based on the measured location of the first chip, and placing the subsequently placed chip on the substrate over the cut.
Abstract:
A method for installing an RFID tag on shipping articles includes applying a strip of conductive material to the surface of the article and providing an RFID chip having a body, a first bottom conductive point, a second bottom conductive point and a nonconductive fin between the first bottom conductive point and the second bottom conductive point. The fin is received in the shipping article. The RFID chip is attached to the shipping article by inserting the chip onto the strip of conductive material on the shipping article such that the fin severs the strip into a first strip and a second strip. The first bottom conductive point is electrically attached to the first strip and the second bottom conductive point is electrically attached to the second strip.
Abstract:
A method of fabricating a tag includes the steps of applying a first patterned adhesive to the surface of the substrate and applying a first electrically conductive foil to the first patterned adhesive. A portion of the first electrically conductive foil not adhered to the first patterned adhesive is removed and a second patterned adhesive is applied to a portion of a surface area of the tag. A preformed second electrically conductive foil is applied to the second patterned adhesive to adhere the second electrically conductive foil to the surface of the substrate and portions of the first and second electrically conductive foils are electrically coupled to each other to form a tag circuit. A second patterned adhesive can be disposed between the first and second electrically conductive foils.
Abstract:
A method for processing a surface of an item and providing an association using a surface processing system includes receiving an item having a first identification marking on a surface of the item to provide a received item for providing a first identification signal in response to a first interrogation signal and applying a second identification marking to the surface of the item for providing a second identification signal in response to a second interrogation signal. At least one of the first and second interrogation signals is applied to the item to provide at least one of the first and second identification signals. At least one of the first and second identification signals is received in response to the at least one of the first and second interrogation signals. An association is made is determined in response to the first receiving.
Abstract:
A three-dimensional dipole antenna system for an RFID tag that optimizes detection for a given available volume in which to situate the RFID tag.
Abstract:
In a tag communication system, a method includes determining range information representative of a distance between two tags, and estimating parameter information representative of backscatter signals of a marker tag and an asset tag. A tag is localized according to the range information and the parameter information to provide a localized tag. The range information is determined according to a beacon signal. The system includes a plurality of beacon signals and the method further includes determining the range information according to at least two of the beacon signals. A logical operation is performed on the range information of the two beacon signals. A further beacon signal has a plurality of signal ranges and the range information is determined according to the signal ranges. A logical operation is performed on the range information of the signal ranges.
Abstract:
A system for radio frequency identification of a tag in an interrogation zone, includes a calibration node disposed in the interrogation zone to measure a signal strength of radio frequency identification signals from a beamforming system and provide signal data in accordance with the signal strength. A reader node is configured to receive the signal data and adjust the radio frequency identification signals generated by the beamforming system based upon the signal data. At least one of the calibration node, the reader node and the beamforming system is a configurable monitoring system. The calibration node, the reader node, and the beamforming system are coupled in a feedback control loop. The beamforming system includes a plurality of beamforming nodes. A signal of at least one beamforming node is optimized in accordance with the feedback control loop.