Abstract:
An ultrasonic diagnostic apparatus includes an memory, an determination unit, an instruction unit, a specifying unit, and an redetermination unit. The memory stores upper limit values of parameters for restricting the powers in display modes. The determination unit determines the powers in the modes so as not to exceed upper limit values of the parameters. The instruction unit inputs an instruction to increase/decrease the power of a specific mode. The specifying unit specifies the parameter value in the specific mode. The redetermination unit determines an upper limit value of the parameter in a mode different from the specific mode based on the upper limit value of the parameter in the specific mode and the parameter value specified by the specifying unit.
Abstract:
In a thin-film transistor comprising respective elements of: three electrodes of a source electrode, a drain electrode and a gate electrode; a channel layer; and a gate insulating film, at least the channel layer is formed by a metal oxide film including indium. Therefore, it is possible to obtain the thin-film transistor, which can manufacture an element to a polymer substrate without using a high temperature process and which can achieve a high performance and a high reliability at low cost.
Abstract:
The present invention provides a process for preparing a light transmissive electromagnetic wave shielding material having an excellent light transmissive property, an excellent electromagnetic wave shielding property, an excellent appearance property and an excellent legibility by a simple method.A process for the preparation of a light transmissive electromagnetic wave shielding material comprising;(A1) printing a pretreatment agent for electroless plating comprising a composite metal oxide and/or a composite metal oxide hydrate and a synthetic resin in a mesh pattern on a transparent substrate 11 to form a mesh-patterned pretreatment layer 12, and(A3) subjecting the pretreatment layer 12 to electroless plating to form a mesh-patterned metal conductive layer on the pretreatment layer 13.
Abstract:
An ultrasonic diagnostic apparatus includes an memory, an determination unit, an instruction unit, a specifying unit, and an redetermination unit. The memory stores upper limit values of parameters for restricting the powers in display modes. The determination unit determines the powers in the modes so as not to exceed upper limit values of the parameters. The instruction unit inputs an instruction to increase/decrease the power of a specific mode. The specifying unit specifies the parameter value in the specific mode. The redetermination unit determines an upper limit value of the parameter in a mode different from the specific mode based on the upper limit value of the parameter in the specific mode and the parameter value specified by the specifying unit.
Abstract:
A method for producing an electromagnetic-wave-shielding light-transmitting window member comprising a transparent substrate and a conductive pattern formed by electroless plating on a surface of the transparent substrate. In the method, an ultraviolet-curable resin paste containing an electroless plating catalyst is applied to a surface of a transparent substrate, and the resulting printed pattern is cured by irradiation of ultraviolet light to form a resin pattern. Subsequently, a plating layer is deposited on the resin pattern by electroless plating treatment to form a conductive pattern. The ultraviolet-curable resin paste is selected from a group of sublimable resists and phthalocyanine-based sublimable materials and contains a volatile substance that is volatized by heating or irradiation. By using the ultraviolet-curable resin paste, a good conductive pattern having excellent adhesion to the transparent substrate can be formed with high accuracy, efficiently, and at low cost.
Abstract:
An ultraviolet-curable resin paste containing an electroless plating catalyst is applied by printing to a surface of a transparent substrate 1, and the resulting printed pattern 2 is cured by irradiation of ultraviolet light to form a resin pattern 3. Subsequently, a plating layer 4 is deposited on the resin pattern 3 by electroless plating treatment to form a conductive pattern 5. The resin pattern 3 to be subjected to the electroless plating treatment has an uncured layer 3A provided on a surface thereof. During the electroless plating treatment, the uncured layer 3A is eroded in the plating bath and particles of the catalyst are exposed. It is possible to form a satisfactory plating layer 4 using the exposed catalyst particles as nuclei. By using the ultraviolet-curable resin paste, a good conductive pattern having excellent adhesion to the transparent substrate can be formed with high accuracy, efficiently, and at low cost.
Abstract:
The present invention provides a process for preparing a light transmissive electromagnetic wave shielding material having an excellent light transmissive property, an excellent electromagnetic wave shielding property, an excellent appearance property and an excellent legibility by a simple method.A process for the preparation of a light transmissive electromagnetic wave shielding material comprising;(A1) printing a pretreatment agent for electroless plating comprising a noble metal compound and a mixture of silane coupling agent and azole compound or a reaction product thereof in a mesh pattern on a transparent substrate 11 to form a mesh-patterned pretreatment layer 12, and(A2) subjecting the pretreatment layer 12 to electroless plating to form a mesh-patterned metal conductive layer 13 on the pretreatment layer 12.
Abstract:
A connection method and a connection structure, using solder bumps, for component-side pad electrodes and substrate-side pad electrodes, and inspecting methods for the connection state thereof which are adaptable to high density mounting, and which allow the miniaturization of the product formed by mounting a surface-mount component onto a substrate. Substrate-side pad electrodes are arranged inside a component-corresponding region A; the length of the substrate-side pad electrodes is set to be larger than that of the corresponding component-side pad electrode; an IC chip (surface-mount component) is placed on the substrate so that each of the solder bumps is opposed to a predetermined substrate-side pad electrode; and the solder bumps are melted by heating, thereby connecting each of the component-side pad electrodes and one of the substrate-side pad electrodes through the solder.
Abstract:
An electronic element including an electronic element base and electrodes each of which has a first electrode having a surface composed of at least Al or an Al alloy and a second electrode composed of a metal nanoparticle sintered body and bonded to the first electrode. A bonding interface between the first electrode and the second electrode has a multilayer structure including, from the side of the first electrode to the side of the second electrode, (a) a first layer primarily composed of Al, (b) a second layer primarily composed of an Al oxide, (c) a third layer primarily composed of an alloy of Al and a constituent element of metal nanoparticles, and (d) a fourth layer primarily composed of the constituent element of the metal nanoparticles.
Abstract:
The present invention provides a process for preparing a light transmissive electromagnetic wave shielding material having an excellent light transmissive property, an excellent electromagnetic wave shielding property, an excellent appearance property and an excellent legibility by a simple method.A process for the preparation of a light transmissive electromagnetic wave shielding material comprising; (A1) printing a pretreatment agent for electroless plating comprising a noble metal compound and a mixture of silane coupling agent and azole compound or a reaction product thereof in a mesh pattern on a transparent substrate 11 to form a mesh-patterned pretreatment layer 12, and (A2) subjecting the pretreatment layer 12 to electroless plating to form a mesh-patterned metal conductive layer 13 on the pretreatment layer 12.