Abstract:
A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a gate structure formed over a fin structure, and a source/drain (S/D) epitaxial layer formed in the fin structure and adjacent to the gate structure. The S/D epitaxial layer includes a first S/D epitaxial layer and a second epitaxial layer. The semiconductor structure includes a gate spacer formed on a sidewall surface of the gate structure, and the gate spacer is directly over the first S/D epitaxial layer. The semiconductor structure includes a dielectric spacer formed adjacent to the gate spacer, and the dielectric spacer is directly over the second epitaxial layer.
Abstract:
A pellicle comprises a stress-controlled metal layer. The stress in said metal layer may be between about 500-50 MPa. A method of manufacturing a pellicle comprising a metal layer includes deposing said metal layer by plasma physical vapor deposition. Process parameters are selected so as to produce a desired stress value in said metal layer, such as between about 500-50 MPa.
Abstract:
A device includes a metal-silicide region formed in a semiconductor material in a contact opening. A concentration of a material, including chlorine, fluorine, or a combination thereof is in the metal-silicide region near an uppermost surface of the metal-silicide region. The presence of chlorine or fluorine results from a physical bombarding of the chlorine or fluorine in the contact opening. As a result of the physical bombard, the opening becomes wider at the bottom of the opening and the sidewalls of the opening are thinned. A capping layer is over the metal-silicide region and over sidewalls of a contact plug opening. A contact plug is formed over the capping layer, filling the contact plug opening. Before the contact plug is formed, a silicidation occurs to form the metal-silicide and the metal-silicide is wider than the bottom of the opening.
Abstract:
A semiconductor device includes a transistor having a source/drain region. A conductive contact is disposed over the source/drain region. A silicide element is disposed below the conductive contact. The silicide element has a non-angular cross-sectional profile. In some embodiments, the silicide element may have an approximately curved cross-sectional profile, for example an ellipse-like profile. The silicide element is formed at least in part by forming an amorphous region in the source/drain region via an implantation process. The implantation process may be a cold implantation process.
Abstract:
A socket of a testing tool is configured to provide testing signals. A device-under-test (DUT) board is configured to provide electrical routing. An integrated circuit (IC) die is disposed between the socket and the DUT board. The testing signals are electrically routed to the IC die through the DUT board. The IC die includes a substrate in which plurality of transistors is formed. A first structure contains a plurality of first metallization components. A second structure contains a plurality of second metallization components. The first structure is disposed over a first side of the substrate. The second structure is disposed over a second side of the substrate opposite the first side. A trench extends through the DUT board and extends partially into the IC die from the second side. A signal detection tool is configured to detect electrical or optical signals generated by the IC die.
Abstract:
A method includes forming a first opening in a dielectric layer over a substrate, lining sidewalls and a bottom of the first opening with a conductive barrier layer, and depositing a seed layer over the conductive barrier layer. The method further includes treating the seed layer with a plasma process, and filling the first opening with a conductive material after the treating the seed layer.
Abstract:
A method includes forming an Inter-layer Dielectric (ILD) having a portion at a same level as a metal gate of a transistor. The ILD and the metal gate are parts of a wafer. The ILD is etched to form a contact opening. The wafer is placed into a PVD tool, with a metal target in the PVD tool. The metal target has a first spacing from a magnet over the metal target, and a second spacing from the wafer. A ratio of the first spacing to the second spacing is greater than about 0.02. A metal layer is deposited on the wafer, with the metal layer having a bottom portion in the contact opening, and a sidewall portion in the contact opening. An anneal is performed to react the bottom portion of the metal layer with the source/drain region to form a silicide region.
Abstract:
A method includes forming a first opening in a dielectric layer over a substrate, lining sidewalls and a bottom of the first opening with a conductive barrier layer, and depositing a seed layer over the conductive barrier layer. The method further includes treating the seed layer with a plasma process, and filling the first opening with a conductive material after the treating the seed layer.
Abstract:
An integrated circuit includes a substrate having a bonding pad region and a non-bonding pad region. A relatively large via, called a “big via,” is formed on the substrate in the bonding region. The big via has a first dimension in a top view toward the substrate. The integrated circuit also includes a plurality of vias formed on the substrate in the non-bonding region. The plurality of vias each have a second dimension in the top view, the second dimension being substantially less than the first dimension.
Abstract:
A device includes a metal-silicide region formed in a semiconductor material in a contact opening. A concentration of a material, including chlorine, fluorine, or a combination thereof is in the metal-silicide region near an uppermost surface of the metal-silicide region. The presence of chlorine or fluorine results from a physical bombarding of the chlorine or fluorine in the contact opening. As a result of the physical bombard, the opening becomes wider at the bottom of the opening and the sidewalls of the opening are thinned. A capping layer is over the metal-silicide region and over sidewalls of a contact plug opening. A contact plug is formed over the capping layer, filling the contact plug opening. Before the contact plug is formed, a silicidation occurs to form the metal-silicide and the metal-silicide is wider than the bottom of the opening.