摘要:
Provided are a compound semiconductor device and a manufacturing method thereof. A substrate and a graphene oxide layer are provided on the substrate. A first compound semiconductor layer is provided on the graphene oxide layer. The first compound semiconductor layer is selectively grown from the substrate exposed by the graphene oxide.
摘要:
According to the present invention, a method for manufacturing a compound semiconductor comprises: forming a graphene-derived material layer on either a first selected substrate or a first selected compound semiconductor layer; forming a second compound semiconductor layer of at least one layer on at least said graphene-derived material layer, and changing the graphene-derived material layer so as to separate said second compound semiconductor layer of at least one layer.
摘要:
According to the present invention, a method for manufacturing a compound semiconductor comprises: forming a graphene-derived material layer on either a first selected substrate or a first selected compound semiconductor layer; forming a second compound semiconductor layer of at least one layer on at least said graphene-derived material layer, and changing the graphene-derived material layer so as to separate said second compound semiconductor layer of at least one layer.
摘要:
Provided are a compound semiconductor device and a manufacturing method thereof. A substrate and a graphene oxide layer are provided on the substrate. A first compound semiconductor layer is provided on the graphene oxide layer. The first compound semiconductor layer is selectively grown from the substrate exposed by the graphene oxide.
摘要:
A compound semiconductor device and method of manufacturing the same. The method includes coating a plurality of spherical balls on a substrate and selectively growing a compound semiconductor thin film on the substrate on which the spherical balls are coated. The entire process can be simplified and a high-quality compound semiconductor thin film can be grown in a short amount of time in comparison to an epitaxial lateral overgrowth (ELO) method.
摘要:
Disclosed is a photocatalyst having a matrix which comprises a substrate and oxide-based nanomaterial formed on the substrate. The photocatalyst has a ratio of area to volume that is higher than a conventional photocatalyst having the same components, and also has a nano-sized photocatalytic layer. Thereby, it has excellent photolytic properties.
摘要:
A heterojunction structure composed of a nitride semiconductor thin film and nanostructures epitaxially grown thereon exhibits high luminescence efficiency property due to facilitated tunneling of electrons through the nano-sized junction, and thus can be advantageously used in light emitting devices.
摘要:
Disclosed herein is an electrical light-emitting device including a transparent conductive nanorod type electrode, in which transparent conductive nanorods grown perpendicular to a light-emitting layer are used as the electrode. Hence, light is not absorbed by the electrode, and tunneling easily occurs due to nanocontact of the nanorods, thus increasing current injection efficiency, and also, total internal reflections decrease. Thereby, the light-emitting device according to this invention has light-emitting properties and luminous efficiency superior to conventional light-emitting devices, including metal electrodes or thin film type transparent electrodes.
摘要:
A heterojunction structure composed of a nitride semiconductor thin film and nanostructures epitaxially grown thereon exhibits high luminescence efficiency property due to facilitated tunneling of electrons through the nano-sized junction, and thus can be advantageously used in light emitting devices.
摘要:
A compound semiconductor device and method of manufacturing the same. The method includes coating a plurality of spherical balls on a substrate and selectively growing a compound semiconductor thin film on the substrate on which the spherical balls are coated. The entire process can be simplified and a high-quality compound semiconductor thin film can be grown in a short amount of time in comparison to an epitaxial lateral overgrowth (ELO) method.