摘要:
After an ultrafine particle is disposed on a giant fullerene by driving the ultrafine particle using an electron beam, the ultrafine particle is enclosed in a core hollow portion of the giant fullerene, by contracting the giant fullerene with the electron beam irradiation. Or a metal ultrafine particle composed of an active metal is enclosed in the core hollow portion of the giant fullerene, by irradiating a high energy beam such as the electron beam to an amorphous carbon including the active metal to form the giant fullerene in an irradiated portion, and by contracting the giant fullerene with the irradiation of the high energy beam.
摘要:
After an ultrafine particle is disposed on a giant fullerene by driving the ultrafine particle 1 using an electron beam, the ultrafine particle is enclosed in a core hollow portion of the giant fullerene, by contracting the giant fullerene with the electron beam irradiation. Or a metal ultrafine particle composed of an active metal is enclosed in the core hollow portion of the giant fullerene, by irradiating a high energy beam such as the electron beam to an amorphous carbon under existing of the active metal to form the giant fullerene in an irradiated portion, and by contracting the giant fullerene with the irradiation of the high energy beam such as the electron beam.
摘要:
An electron beam of more than 1.times.10.sup.19 e/cm.sup.2 .multidot.sec is irradiated to metastable metal oxide particles such as .theta.-Al.sub.2 O.sub.3 particles or the like disposed on an amorphous carbon film. A phase transformation or the like of the metastable metal oxide particles is occurred by the electron beam irradiation. Thus, stable metal oxide ultrafine particles such as an .alpha.-Al.sub.2 O.sub.3 ultrafine particle 2 whose diameter is more tiny than the metastable metal oxide particles used, and a metal ultrafine particle composed of an oxide such as Al ultrafine particles are produced.
摘要翻译:将大于1×10 19 e / cm 2·sec的电子束照射到设置在无定形碳膜上的亚稳态金属氧化物颗粒如θ-Al 2 O 3颗粒等。 通过电子束照射发生亚稳态金属氧化物颗粒的相变等。 因此,制造稳定的金属氧化物超细颗粒,例如其直径比所用的亚稳态金属氧化物颗粒更微小的α-Al 2 O 3超细颗粒2,以及由诸如Al超细颗粒的氧化物组成的金属超细颗粒。
摘要:
A non-oxide-series-sintered ceramic body, which has a conductive film on its surface and which permits a strong bond to a metal member, the conductive film comprising a metal silicide selected from the group consisting of molybdenum silicide and tungsten silicide.
摘要:
A target material having pores is disposed on a substrate. A high energy beam is irradiated to the inner walls of the pores of the target material in a slanting direction. Constituent atoms or molecules of the target material are detached from it to obtain a single or plurality of ultrafine particles separated as a unit substance. The superfine particles are formed at desired positions corresponding to the pores of the target material. Besides, by using an amorphous carbon substrate as the substrate, fullerenes such as an onion-like graphite are formed with the ultrafine particles as nucleation points. When the high energy beam is irradiated to at least two neighboring metal ultrafine particles, these metal ultrafine particles are bonded mutually. When the obtained metal ultrafine particle bonded body has a corresponding grain boundary, the high energy beam is further irradiated to lower value .SIGMA. of the corresponding grain boundary of the bonded interface. Besides, the metal ultrafine particle bonded body can also be made into a monocrystal grain or a polycrystal grain. Such a metal ultrafine particle bonded body is stable.
摘要:
An onion-like graphite 2 is produced by irradiating an electron beam to an amorphous carbon 3 under an active aluminum nanoparticle 1. By further irradiating the electron beam to the onion-like graphite 2 to intercalate aluminum atoms constituting the aluminum nanoparticle 1 in a space between (001) plane and (002) plane of the onion-like graphite 2 having a layer structure, an intercalation compound 4 is produced. Or, after the aluminum nanoparticles were driven and disposed on the onion-like graphite by electron beam, or the like, by irradiating the electron beam to intercalate aluminum atoms in the space between the (001) plane and the (002) plane of the onion-like graphite having a layer structure, the intercalation compound is produced.
摘要:
A wear-resistant member formed comprises a sintered ceramic body essentially consisting of 0.1 to 15% by weight of at least one material selected from the group comprising molybdenum carbide, niobium carbide, hafnium carbide, tantalum carbide, tungsten carbide, molybdenum silicide, niobium silicide, hafnium silicide, tantalum silicide, tungsten silicide, molybdenum boride, niobium boride, hafnium boride, tantalum boride, and tungsten boride, 2 to 20% by weight of a boundary phase selected from the group consisting of Si--Y--Al--O--N and Si--Y--Al--O--N--B, and a balance of .beta.-silicon nitride. The wear-resistant member preferably has a metal member bonded to the sintered ceramic body. The wear-resistant member can perform high-load work such as high-speed cutting.
摘要:
A fullerene containing structure comprises an amorphous carbon base having a first amorphous carbon layer and a second amorphous carbon layer laminated together, and a giant fullerene formed in the neighborhood of layer interface of the amorphous carbon base straddling on both the amorphous carbon layers. A plurality of giant fullerenes generated in the neighborhood of the layer interface are connected together to form a continuum body such as a film structure (a film of giant fullerene) or the like. According to such the fullerene containing structure, a shape and a position to be formed of the giant fullerene, further a state of formation such as a connecting structure or the like can be controlled. In addition, the stable carbon base can protect the generated giant fullerene itself.
摘要:
An ultrafine Al particle consists of an Al multiply twinned particle. The Al multiply twinned particle has a decahedron structure surrounded by {111} planes. The Al multiply twinned decahedral particle has a diameter of 10 to 30 nm. Such an ultrafine Al particle consisting of the Al multiply twinned decahedral particle is obtained as follows. A metastable Al oxide particle is placed on an amorphous carbon substrate having the reduction effect. Then the electron beam is irradiated to the metastable Al oxide particle placed on the amorphous carbon substrate in the vacuum atmosphere. From the metastable Al oxide particle, Al atoms or Al clusters are emitted and adsorbed to the substrate. By adjusting the electron beam intensity so that the ultrafine Al particle in the above procedure has a diameter from 10 to 30 nm, the Al multiply twinned particle having a decahedron is obtained.
摘要:
Dispose a fine metal particle on a semiconductor substrate. By heat-treating this in a vacuum, a constituent element of the semiconductor substrate is dissolved into the fine metal particle to form a solid solution, resulting in further formation of a homogeneous liquid phase (liquid droplet) composed of semiconductor-metal. By annealing this, the constituent element of the semiconductor substrate is precipitated from the semiconductor-metal liquid droplet. Thus, a fine projection composite structure comprising a semiconductor substrate, a semiconductor fine projection epitaxially grown selectively at an arbitrary position on the semiconductor substrate, and a metal layer disposed selectively on the semiconductor fine projection, can be obtained. The metal layer can be removed as demands arise. Such a fine projection composite structure possesses applicability in, for instance, an ultra-high integration semiconductor device or a quantum size device.