Abstract:
An apparatus for connecting to an update server includes an update unit configured to connect to the update server over a network using a pre-stored domain name address of the update server and an IP address acquisition unit configured to acquire an IP address of the connected update server. The IP address acquired by the IP address acquisition unit is stored as a trusted IP address in a storage unit. The apparatus further includes a reconnection processing unit configured to fetch the trusted IP address of the update server and try connecting to the update server using the trusted IP address in the case of failure to connect to the update server using the pre-stored domain name address.
Abstract:
A semiconductor package comprises a semiconductor chip, through electrodes and cooling parts. The semiconductor chip has bonding pads on an upper surface thereof. The through-electrodes are formed in the semiconductor chip. The cooling parts are formed in the semiconductor chip and on the upper surface of the semiconductor chip in order to dissipate heat.
Abstract:
A semiconductor chip with a chip selection structure suitable for a stacked semiconductor chip includes a semiconductor chip body and a chip selection structure. The chip selection structure includes a chip selection pad disposed over the semiconductor chip body, a main through electrode electrically connected to the chip selection pad, and a sub through electrode interposed between the main through electrode and the chip selection pad. A plurality of the semiconductor chips, each having the same chip selection structure, can be stacked by offsetting the stacked semiconductor chips.
Abstract:
A flip chip bonded package applicable to a fine pitch technology uses, inter alia, insulative posts instead of using conductive bumps, which correspond to electrodes one by one. The insulative posts are assigned to every two bonding pads for the sake of flip chip bonding. This makes it possible to fabricate flip chip bonded packages very easily without modifying conventional processes. Larger bumps are provided even in the case of a technology having the same pad size and pitch during flip chip bonding. This makes the subsequent attachment process easy and reduces the defective ratio. The insulative posts, when made of a polymer, also act as stress buffers. This improves the reliability of the package.
Abstract:
A flip chip bonded package applicable to a fine pitch technology uses, inter alia, insulative posts instead of using conductive bumps, which correspond to electrodes one by one. The insulative posts are assigned to every two bonding pads for the sake of flip chip bonding. This makes it possible to fabricate flip chip bonded packages very easily without modifying conventional processes. Larger bumps are provided even in the case of a technology having the same pad size and pitch during flip chip bonding. This makes the subsequent attachment process easy and reduces the defective ratio. The insulative posts, when made of a polymer, also act as stress buffers. This improves the reliability of the package.
Abstract:
A semiconductor chip includes a substrate having a first surface and a second surface opposite to the first surface, a chip pad disposed on the first surface of the substrate, and a through-silicon via (TSV) including a plurality of sub vias electrically connected to the chip pad at different positions.
Abstract:
A wafer level chip scale package having an enhanced heat exchange efficiency with an EMF shield is presented. The wafer level chip scale package includes a semiconductor chip, an insulation layer, and a metal plate. The semiconductor chip has a plurality of bonding pads on an upper face thereof. The insulation layer is disposed over the upper face of the semiconductor chip and has openings that expose some portions of the bonding pads. The metal plate covers an upper face of the insulation layer and side faces of the semiconductor chip in which the metal plate is electrically insulated from the bonding pads.
Abstract:
A stack package includes a substrate having an upper surface and a lower surface which faces away from the upper surface, a lower stack group, an upper stack group, and connection members. The lower stack group is attached to the upper surface of the substrate and includes at least two semiconductor chips which are stacked in a face-up type to form on or more steps. The upper stack group is disposed over the lower stack group and includes at least two semiconductor chips which are stacked in a face-down type in such a way as to form one or more steps whose direction mirrors the direction of the at least one step of the lower stack group. The connection members electrically connect the semiconductor chips of the lower and upper stack groups to the substrate.
Abstract:
A semiconductor chip includes a semiconductor chip body, a through-silicon via and a silicon pattern. The semiconductor chip body has a first surface and a second surface facing away from the first surface. The through-silicon via is formed to pass through the semiconductor chip body and has a metal layer and an insulation layer which protrude from the second surface. The silicon pattern is formed on a sidewall of the protruding through-silicon via.
Abstract:
A printed circuit board and a flip chip package using the same are designed to minimize thermal stress due to different thermal coefficients present in areas having metal lines and solder resist versus other areas on the printed circuit board. The printed circuit board includes an insulation layer; a first metal line formed on one surface of the insulation layer and having at one end thereof a bump land and a projection which integrally extends from the bump land; a second metal line formed on the other surface of the insulation layer and having at one end thereof a ball land; a via metal line formed through the insulation layer to connect the first and second metal lines to each other; and solder resists formed on the upper and lower surfaces of the insulation layer to expose the bump land and the ball land.