Abstract:
There are provided a lighting lens, a lighting lens array, and a lighting apparatus. The lighting lens may include an incidence part to receive light from a light source and an emission part to emit light provided from the incidence part. The incidence part may have a concave region that contains a light source and a first protrusion at a rear side of the light source that protrudes downwards from a top surface of the concave region. The emission part may include a dome-shaped part that encloses the incidence part and a second protrusion at the rear side of the light source that protrudes upwards from a top surface of the dome-shaped part. A lowermost portion of the emission part may be formed at a first plane, and an angle between an outer surface of the emission part and the first plane is an obtuse angle.
Abstract:
Methods of forming through-silicon vias by using laser ablation. A method includes, laser drilling to form a plurality of grooves by irradiating a laser beam onto an upper surface of a silicon wafer, and grinding a lower surface of the silicon wafer to form a plurality of through-silicon vias by exposing the grooves on the lower surface of the silicon wafer.
Abstract:
A light-emitting device includes a light-emitting structure, a lens, and a reflective layer. The light-emitting structure includes a light-emitting stack structure including a first-conductivity-type semiconductor layer, an active layer, and a second-conductivity-type semiconductor layer, which are stacked, a first electrode layer electrically connected to the first-conductivity-type semiconductor layer, and a second electrode layer electrically connected to the second-conductivity-type semiconductor layer. The lens is located on the light-emitting structure. The reflective layer is located on the lens.
Abstract:
A light-emitting device includes a light-emitting structure, a lens, and a reflective layer. The light-emitting structure includes a light-emitting stack structure including a first-conductivity-type semiconductor layer, an active layer, and a second-conductivity-type semiconductor layer, which are stacked, a first electrode layer electrically connected to the first-conductivity-type semiconductor layer, and a second electrode layer electrically connected to the second-conductivity-type semiconductor layer. The lens is located on the light-emitting structure. The reflective layer is located on the lens.
Abstract:
Methods of cutting silicon substrates having a light-emitting element package. The method includes preparing a silicon substrate on which a plurality of light-emitting element chips are mounted and a transparent material layer that covers the light-emitting element chips is formed; removing the transparent material layer between the light-emitting element chips along a predetermined cutting line by using a mechanical cutting method; forming a scribing line corresponding to the predetermined cutting line on the silicon substrate by using a laser processing method; and cutting the silicon substrate to form individual light-emitting element packages by applying a mechanical impact to the silicon substrate along the scribing line. The method may enhance productivity of a cutting process of light-emitting element packages, and may prevent damage or transformation of the transparent material layer.