Abstract:
A semiconductor device includes first and second gate structures, first and second contact plug structures and a first wiring on a substrate. The first and second source/drain layers are formed on portions of the substrate adjacent to the first and second gate structures, respectively. The first and second contact plug structures are formed on the first and second source/drain layers, respectively. The first wiring contacts an upper surface of the first gate structure. The first gate structure includes a first gate electrode and a first gate insulation pattern on a lower surface and a sidewall of the first gate electrode. The second gate structure includes a second gate electrode and a second gate insulation pattern on a lower surface and a sidewall of the second gate electrode. The upper surface of the second gate electrode is lower than an upper surface of the first gate electrode.
Abstract:
An integrated circuit device includes a fin-type active area that extends on a substrate in a first direction, a gate structure that extends on the substrate in a second direction and crosses the fin-type active area, source/drain areas arranged on first and second sides of the gate structure, and a contact structure electrically connected to the source/drain areas. The source/drain areas comprise a plurality of merged source/drain structures. Each source/drain area comprises a plurality of first points respectively located on an upper surface of the source/drain area at a center of each source/drain structure, and each source/drain area comprises at least one second point respectively located on the upper surface of the source/drain area where side surfaces of adjacent source/drain structures merge with one another. A bottom surface of the contact structure is non-uniform and corresponds to the first and second points.
Abstract:
A method of controlling an etching process for forming fine patterns of a semiconductor device includes forming a lower pattern having a plurality of openings on a substrate, obtaining a width value of the lower pattern, and controlling a process recipe of an etching process for forming the lower pattern by using the width value.
Abstract:
An integrated circuit device includes a fin-type active area that extends on a substrate in a first direction, a gate structure that extends on the substrate in a second direction and crosses the fin-type active area, source/drain areas arranged on first and second sides of the gate structure, and a contact structure electrically connected to the source/drain areas. The source/drain areas comprise a plurality of merged source/drain structures. Each source/drain area comprises a plurality of first points respectively located on an upper surface of the source/drain area at a center of each source/drain structure, and each source/drain area comprises at least one second point respectively located on the upper surface of the source/drain area where side surfaces of adjacent source/drain structures merge with one another. A bottom surface of the contact structure is non-uniform and corresponds to the first and second points.
Abstract:
A semiconductor device according to some embodiments of the disclosure may include a fin type active pattern extending in a first direction, a plurality of gate structures on the fin type active pattern and extending in a second direction different from the first direction, a plurality of inter-contact insulation patterns on respective ones of the plurality of gate structures, a plurality of interlayer insulation layers on side surfaces of the plurality of gate structures, and a plurality of contact plugs respectively between pairs of the plurality of gate structures. The fin type active pattern may include a plurality of source/drains. Lower ends of the plurality of contact plugs may contact the plurality of source/drains. The plurality of gate structures may each include a first gate metal, a second gate metal, a gate capping layer, a gate insulation layer, a first spacer, and a second spacer.
Abstract:
A semiconductor device according to some embodiments of the disclosure may include a fin type active pattern extending in a first direction, a plurality of gate structures on the fin type active pattern and extending in a second direction different from the first direction, a plurality of inter-contact insulation patterns on respective ones of the plurality of gate structures, a plurality of interlayer insulation layers on side surfaces of the plurality of gate structures, and a plurality of contact plugs respectively between pairs of the plurality of gate structures. The fin type active pattern may include a plurality of source/drains. Lower ends of the plurality of contact plugs may contact the plurality of source/drains. The plurality of gate structures may each include a first gate metal, a second gate metal, a gate capping layer, a gate insulation layer, a first spacer, and a second spacer.
Abstract:
An integrated circuit device includes a fin-type active region that extends from a substrate and in a first lateral direction, a device isolation film on a trench region on the substrate, an insulating liner structure that extends through the substrate in a vertical direction and contacts the device isolation film at a first vertical level, a via power rail that extends through the device isolation film in the vertical direction and comprising a first bottom surface at a second vertical level, and a backside power rail comprising a main rail and a protrusion rail, where the main rail extends through the substrate and the insulating liner structure in the vertical direction, and where the protrusion rail extends from the main rail toward the via power rail.
Abstract:
An integrated circuit device includes a fin-type active area that extends on a substrate in a first direction, a gate structure that extends on the substrate in a second direction and crosses the fin-type active area, source/drain areas arranged on first and second sides of the gate structure, and a contact structure electrically connected to the source/drain areas. The source/drain areas comprise a plurality of merged source/drain structures. Each source/drain area comprises a plurality of first points respectively located on an upper surface of the source/drain area at a center of each source/drain structure, and each source/drain area comprises at least one second point respectively located on the upper surface of the source/drain area where side surfaces of adjacent source/drain structures merge with one another. A bottom surface of the contact structure is non-uniform and corresponds to the first and second points.
Abstract:
A method of controlling an etching process for forming fine patterns of a semiconductor device includes forming a lower pattern having a plurality of openings on a substrate, obtaining a width value of the lower pattern, and controlling a process recipe of an etching process for forming the lower pattern by using the width value.