Abstract:
The present disclosure relates to a semiconductor device including an oxygen gettering layer between a group III-V compound semiconductor layer and a dielectric layer, and a method of fabricating the semiconductor device. The semiconductor device may include a compound semiconductor layer; a dielectric layer disposed on the compound semiconductor layer; and an oxygen gettering layer interposed between the compound semiconductor layer and the dielectric layer. The oxygen gettering layer includes a material having a higher oxygen affinity than a material of the compound semiconductor layer.
Abstract:
A semiconductor device is provided that includes a diffusion barrier layer between a compound semiconductor layer and a dielectric layer, as well as a method of fabricating the semiconductor device, such that the semiconductor device includes a compound semiconductor layer; a dielectric layer; and a diffusion barrier layer including an oxynitride formed between the compound semiconductor layer and the dielectric layer.
Abstract:
A semiconductor device is provided that includes a diffusion barrier layer between a compound semiconductor layer and a dielectric layer, as well as a method of fabricating the semiconductor device, such that the semiconductor device includes a compound semiconductor layer; a dielectric layer; and a diffusion barrier layer including an oxynitride formed between the compound semiconductor layer and the dielectric layer.
Abstract:
A substrate structure, a complementary metal oxide semiconductor (CMOS) device including the substrate structure, and a method of manufacturing the CMOS device are disclosed, where the substrate structure includes: a substrate, at least one seed layer on the substrate formed of a material including boron (B) and/or phosphorus (P), and a buffer layer on the seed layer. This substrate structure makes it possible to reduce the thickness of the buffer layer and also improve the performance characteristics of a semiconductor device formed with the substrate structure.