Abstract:
A memory device useable with a memory system includes a voltage generator to a plurality of first candidate voltages and a plurality of second candidate voltages, and an X decoder to sequentially apply each of the plurality of first candidate voltages and each of the plurality of second candidate voltages to one or more cells of a memory cell array, and then to apply one of the plurality of first candidate voltages and one of the plurality of second candidate voltages as a first read voltage and a second voltage, respectively, to read data from the cells of the memory cell array according to a characteristic of the cells of the memory cell array.
Abstract:
A non-volatile memory device receives a start command through a command line, receives an address through an address line, receives at least one setting value through the address line, receives a confirm command corresponding to the start command through the command line, sets at least one parameter of the non-volatile memory device as the setting value based on the start command, a number of the setting value, and the confirm command, and executes an operation that corresponds to the start command, on a memory cell that corresponds to the address, based on the set parameter.
Abstract:
A method of programming a nonvolatile memory device including multi-level cells that store multi-bit data, includes performing a pre-programming operation that programs at least some of the multi-level cells to a plurality of intermediate states which are different from an erased state, and performing a main programming operation that programs the multi-level cells to a plurality of target states corresponding to the multi-bit data. At least some of the intermediate program states have threshold voltage distributions that partially overlap each other.
Abstract:
A semiconductor device includes a substrate, and a through electrode passing through the substrate. The semiconductor device has a pad region and a through electrode region. A pad covers the pad region, extends into the through electrode region, and delimits an opening in the through electrode region. A through electrode extends through the semiconductor substrate below the hole in the pad in the through region.
Abstract:
Provided is a method of programming a non-volatile memory device. The method includes applying a first programming pulse to a corresponding wordline of the non-volatile memory device, applying a second programming pulse to the wordline, wherein a voltage of the second programming pulse is different from that of the first programming pulse, and applying voltages to each bitline connected to the wordline, the voltages applied to each of the bitlines are different from each other according to a plurality of bit values to be programmed to corresponding memory cells in response to the first programming pulse or the second programming pulse.
Abstract:
A flash memory device includes a plurality of memory blocks. A selected memory block among the plurality of memory blocks includes 2n pages of data. The selected memory block includes different types of memory cells capable of storing different numbers of bits.
Abstract:
A memory diagnosis system includes a memory device and a server. The memory device includes a memory module configured to adjust operational parameters in response to a parameter control signal, a memory controller configured to generate the parameter control signal in response to a feedback signal, and a memory state monitor configured to monitor the memory module to generate an information signal that includes information on a state of the memory module. The server is configured to generate the feedback signal in response to the information signal.
Abstract:
A memory diagnosis system includes a memory device and a server. The memory device includes a memory module configured to adjust operational parameters in response to a parameter control signal, a memory controller configured to generate the parameter control signal in response to a feedback signal, and a memory state monitor configured to monitor the memory module to generate an information signal that includes information on a state of the memory module. The server is configured to generate the feedback signal in response to the information signal.
Abstract:
A non-volatile memory device receives a start command through a command line, receives an address through an address line, receives at least one setting value through the address line, receives a confirm command corresponding to the start command through the command line, sets at least one parameter of the non-volatile memory device as the setting value based on the start command, a number of the setting value, and the confirm command, and executes an operation that corresponds to the start command, on a memory cell that corresponds to the address, based on the set parameter.
Abstract:
A method of operating a memory device includes changing a first read voltage, which determines a first voltage state or a second voltage state, to a voltage within a first range and determining the voltage as a first select read voltage, and changing a second read voltage, which is used to determine whether the data stored in the memory cells is a third different voltage state or a fourth different voltage state, to a voltage within a second different range and determining the voltage as a second select read voltage. The first voltage state overlaps the second voltage. The third voltage state overlaps the fourth voltage state. A difference between a voltage at an intersection of the third and fourth voltage states and the second read voltage is greater than a difference between a voltage at an intersection of the first and second voltage states and the first read voltage.