Abstract:
An apparatus of fabricating a semiconductor device may include a chamber including a housing and a slit valve used to open or close a portion of the housing, a heater chuck provided in a lower region of the housing and used to heat a substrate, a target provided over the heater chuck, a plasma electrode provided in an upper region of the housing and used to generate plasma on the target, a heat-dissipation shield surrounding the inner wall of the housing between the plasma electrode and the heater chuck, and an edge heating structure provided between the heat-dissipation shield and the inner wall of the housing and configured to heat the heat-dissipation shield and an edge region of the substrate and to reduce a difference in temperature between center and edge regions of the substrate.
Abstract:
Embodiments relate generally to semiconductor device fabrication and processes, and more particularly, to an apparatus and arrangements of magnetic field generators configured to generate rotating magnetic fields to facilitate physical vapor deposition (“PVD”). In one embodiment, a magnetic field generator apparatus can include a rotatable magnetic field and a counterbalance magnetic field generator that rotates about the axis of rotation in opposition to the rotatable magnetic field generator. The rotatable magnetic field generator generates a first magnitude of a magnetic field adjacent to a first circumferential portion of a circular region. The counterbalance magnetic field generator generates a second magnitude of the magnetic field adjacent to a second circumferential portion. The rotatable and counterbalance magnetic field generators can be configured to generate the magnetic field between the first and a second plane along a diameter extending from the first circumferential portion to the second circumferential portion.
Abstract:
An apparatus of fabricating a semiconductor device may include a chamber including a housing and a slit valve used to open or close a portion of the housing, a heater chuck provided in a lower region of the housing and used to heat a substrate, a target provided over the heater chuck, a plasma electrode provided in an upper region of the housing and used to generate plasma on the target, a heat-dissipation shield surrounding the inner wall of the housing between the plasma electrode and the heater chuck, and an edge heating structure provided between the heat-dissipation shield and the inner wall of the housing and configured to heat the heat-dissipation shield and an edge region of the substrate and to reduce a difference in temperature between center and edge regions of the substrate.
Abstract:
Disclosed are a collimator, a fabrication apparatus including the same, and a method of fabricating a semiconductor device using the same. The fabrication apparatus may include a chamber, a heater chuck provided in a lower region of the chamber and configured to heat a substrate, a target provided over the heater chuck, the target containing a source for a thin layer to be deposited on the substrate, a plasma electrode provided in an upper region of the chamber and configured to generate plasma near the target and thereby to produce particles from the source, and a collimator provided between the heater chuck and the target.
Abstract:
A method of fabricating a variable resistance memory device includes: forming a bottom electrode on a substrate; forming a dielectric layer on the substrate, wherein the dielectric layer has a first trench that exposes the bottom electrode; forming a variable resistance layer in the first trench; and irradiating the variable resistance layer with a laser, wherein the variable resistance layer is irradiated by the laser for a time of about 1.8 μs to about 54 μs.
Abstract:
Embodiments relate generally to semiconductor device fabrication and processes, and more particularly, to systems and methods that implement magnetic field generators configured to generate rotating magnetic fields to facilitate physical vapor deposition (“PVD”). In one embodiment, a system generates a first portion of a magnetic field adjacent a first circumferential portion of a substrate, and can generate a second portion of the magnetic field adjacent to a second circumferential portion of the substrate. The second circumferential portion is disposed at an endpoint of a diameter that passes through an axis of rotation to another endpoint of the diameter at which the first circumferential portion resides. The second peak magnitude can be less than the first peak magnitude. The system rotates the first and second portions of the magnetic fields to decompose a target material to form a plasma adjacent the substrate. The system forms a film upon the substrate
Abstract:
A variable resistance memory device may include insulating layers stacked on a substrate, a first conductive line penetrating the insulating layers, switching patterns between the insulating layers, a phase change pattern between the first conductive line and each of the switching patterns, and a capping pattern disposed between the phase change pattern and the first conductive line and disposed in a region surrounded by the phase change pattern.
Abstract:
A variable resistanvce memory device may include a plurality of first conductive lines extending in a first direction, a plurality of second conductive lines extending in a second direction, a plurality of memory cells, each memory cell at a respective intersection, with respect to a top down view, between a corresponding one of the first conductive lines and a corresponding one of the second conductive lines, each memory cell comprising a variable resistance structure and a switching element sandwiched between a top electrode and a bottom electrode, and a first dielectric layer filling a space between the switching elements of the memory cells. A top surface of the first dielectric layer is disposed between bottom and top surfaces of the top electrodes of the memory cells.
Abstract:
Disclosed is a method of fabricating a semiconductor device. The method may include forming a mold layer on a substrate, the mold layer having a hole exposing a portion of the substrate, forming a phase transition layer with a void, in the hole, and thermally treating the phase transition layer to remove the void from the phase transition layer. The thermal treating of the phase transition layer may include heating the substrate to a first temperature to form a diffusion layer in the phase transition layer, and the first temperature may be lower than or equal to 55% of a melting point of the phase transition layer.
Abstract:
Provided are a variable resistance memory device and a method of forming the same. The variable resistance memory device may include a substrate, a plurality of bottom electrodes on the substrate, and a first interlayer insulating layer including a trench formed therein. The trench exposes the bottom electrodes and extends in a first direction. The variable resistance memory device further includes a top electrode provided on the first interlayer insulating layer and extending in a second direction crossing the first direction and a plurality of variable resistance patterns provided in the trench and having sidewalls aligned with a sidewall of the top electrode.