Abstract:
A semiconductor device includes first and second active regions parallel to each other and respectively extending in a first direction, an isolation layer between the first and second active regions, a first line structure and a second line structure overlapping the first and second active regions and the isolation layer, parallel to each other, and extending in a second direction, a first source/drain region on the first active region, and a second source/drain region on the second active region. The first line structure includes a first gate structure, a second gate structure, and a first insulating separation pattern between the first and second gate structures. The second line structure includes a third gate structure, a fourth gate structure, and a second insulating separation pattern between the third and fourth gate structures. The first and second insulating separation patterns are spaced apart from each other. The first insulating separation pattern has first and second side surfaces opposing each other, and third and fourth side surfaces opposing each other. At least one of the first and second side surfaces and at least one of the third and fourth side surfaces have different side profiles.
Abstract:
A semiconductor package includes a first redistribution structure including a top surface, a chip arranged on the top surface of the first redistribution structure the chip having a top surface, bottom surface, and side surfaces, and a package body arranged on the top surface of the first redistribution structure to cover the side surfaces of the chip. The first redistribution structure includes a plurality of redistribution layers stacked in a vertical direction, a plurality of redistribution insulating layers stacked in the vertical direction and which insulate the plurality of redistribution layers from each other, a plurality of redistribution vias buried in a plurality of redistribution via holes penetrating the plurality of redistribution insulating layers and electrically connecting the plurality of redistribution layers to each other, and a plurality of self-formed barrier layers formed between side surfaces of the plurality of redistribution layers and the plurality of redistribution insulating layers.
Abstract:
A semiconductor memory device includes: a substrate having a first channel structure and a second channel structure respectively extending in a first direction and arranged in a second direction perpendicular to the first direction; a first gate structure disposed on the first channel structure and extending in the second direction on the substrate; a second gate structure disposed on the second channel structure and extending in the second direction; first source/drain regions respectively disposed on opposite sides of the first gate structure; second source/drain regions respectively disposed on opposite sides of the second gate structure; a gate separation pattern disposed between the first and second gate structures and having an upper surface at a level lower than that of an upper surface of each of the first and second gate structures, the gate separation pattern including a first insulating material; and a gate capping layer disposed on the first and second gate structures and having an extension portion extending between the first and second gate structures to be connected to the gate separation pattern, the gate capping layer including a second insulating material different from the first insulating material.
Abstract:
A semiconductor device is provided. The semiconductor device includes a substrate, a first active pattern, which extends in a first direction on the substrate, a second active pattern, which extends in the first direction on the substrate and is spaced apart from the first active pattern by a first pitch in a second direction different from the first horizontal direction, a third active pattern, which extends in the first direction on the substrate and is spaced apart from the second active pattern by a second pitch greater than the first pitch in the second direction, a field insulating layer, which borders side walls of each of the first to third active patterns, a dam, which is between the first active pattern and the second active pattern on the field insulating layer, the region between the second active pattern and the third active pattern being free of the dam, a gate electrode, which extends in the second direction, and has a first portion on the first active pattern, a second portion on the second active pattern, and a third portion on the third active pattern, a first work function layer between the first portion of the gate electrode and the dam, and a second work function layer between the second portion of the gate electrode and the dam.
Abstract:
A semiconductor device includes a substrate having an active pattern, a conductive pattern crossing the active pattern, a spacer structure on at least one side surface of the conductive pattern, and a capping structure on the conductive pattern. The capping structure includes a first capping pattern and a second capping pattern. The second capping pattern is disposed on a top surface of the first capping pattern and a top surface of the spacer structure.
Abstract:
A memory device to correct a defect cell generated after packing is performed includes a memory cell array in which a plurality of memory cells are arranged, a repair circuit unit including a first storage unit to store defect cell information in the memory cell array, and a fuse circuit unit including a second storage unit that is programmed according to the defect cell information stored in the first storage unit. The first storage unit includes a volatile memory device, and the second storage unit includes a non-volatile memory device.
Abstract:
Semiconductor devices may include first and second fins that protrude from a substrate, extend in a first direction, and are separated from each other in the first direction. Semiconductor devices may also include a field insulating layer that is disposed between the first and second fins to extend in a second direction intersecting the first direction, an etch-stop layer pattern that is formed on the field insulating layer and a dummy gate structure that is formed on the etch-stop layer pattern.
Abstract:
Semiconductor devices may include first and second fins that protrude from a substrate, extend in a first direction, and are separated from each other in the first direction. Semiconductor devices may also include a field insulating layer that is disposed between the first and second fins to extend in a second direction intersecting the first direction, an etch-stop layer pattern that is formed on the field insulating layer and a dummy gate structure that is formed on the etch-stop layer pattern.
Abstract:
Field effect transistors including a source region and a drain region on a substrate, a fin base protruding from a top surface of the substrate, a plurality of fin portions extending upward from the fin base and connecting the source region with the drain region, a gate electrode on the fin portions, and a gate dielectric between the fin portions and the gate electrode may be provided. A top surface of the substrate may include a plurality of grooves (e.g., a plurality of convex portions and a plurality of concave portions). Further, a device isolation layer may be provided to expose upper portions of the plurality of fin portions and to cover top surfaces of the plurality of grooves.
Abstract:
A semiconductor device includes a substrate including a first active pattern and a second active pattern, a gate electrode including a first gate electrode on the first active pattern and a second gate electrode on the second active pattern, a gate cutting pattern between the first and second gate electrodes, gate spacers on opposing side surfaces of the gate electrode, and a gate capping pattern on top surfaces of the gate electrode, the gate cutting pattern, and the gate spacers and extending in the first direction. The gate cutting pattern includes a first and second side surfaces, which are opposite to each other in a second direction crossing the first direction. The first and side surfaces are in contact with respective ones of the gate spacers, and the top surface of the gate cutting pattern is closer to the substrate than the top surfaces of the pair of gate spacers.