摘要:
The objective of the present invention is to provide: a robot arm extension device capable of adjusting an operating radius according to the operation environment and requirements of a robot in industrial sites; and a robot including the robot arm extension device. The robot arm extension device according to the present invention comprises: a housing; an adapter formed on one side of the housing and connected to the robot; a length extending part embedded in the housing and withdrawn from or inserted into the housing; and a driving part for providing the driving power of the length extending part.
摘要:
An electronic device to be put on a cradle may include a housing including a part in a hemispherical shape and physically coming into contact with the cradle in an arbitrary position when the electronic device is put on the cradle, a display arranged on another part of the housing, a camera module to obtain an image in a direction that the display faces, a sensor module to sense an orientation of the electronic device; and a processor to determine a target orientation of the electronic device based on the obtained image, and create control data to change the orientation of the electronic device based on the sensed orientation and the target orientation of the electronic device.
摘要:
An endoscope to acquire a 3D image and a wide view-angle image and an image processing apparatus using the endoscope includes a front image acquirer to acquire a front image and a lower image acquirer to acquire a lower image in a downward direction of the front image acquirer. The front image acquirer includes a first objective lens and a second objective lens arranged side by side in a horizontal direction. The lower image acquirer includes a third objective lens located below the first objective lens and inclined from the first objective lens and a fourth objective lens located below the second objective lens and inclined from the second objective lens.
摘要:
Disclosed is a user equipment (UE), cleaning robot including the same, and method for controlling the cleaning robot, which is intended for a cleaning robot to move to a place where there is the user by the user transmitting a radio communication signal to the cleaning robot and the cleaning robot estimating a location from which the radio communication signal is transmitted based on attenuation ratios of signal intensities over distance. An embodiment of the cleaning robot includes a main body; a moving unit for moving the main body; a communication unit for performing wireless communication with a user equipment (UE); and a robot controller for determining a location of the UE based on intensity of a radio communication signal received by the communication unit, wherein the robot controller controls the moving unit to move the main body to the determined location of the UE once the location of the UE is determined.
摘要:
An optical scanning probe and an apparatus to generate three-dimensional (3D) data using the same are provided. The apparatus to generate 3D data includes an optical scanning probe that scans light generated from a light emitter over an object to be measured, a distance calculation processor that calculates a distance between the optical scanning probe and the object to be measured, based on the light scanned over the object to be measured and light reflected from the object to be measured; and a depth image generation processor that generates 3D data based on a scanning direction of the optical scanning probe and the distance between the optical scanning probe and the object to be measured.
摘要:
Provided are a walk-assistive robot and a method of controlling the same. The method of controlling the walk-assistive robot includes: obtaining ground information that is information regarding ground a walking direction; determining control patterns of the walk-assistive robot by analyzing the obtained ground information; and controlling the walk-assistive robot based on the determined control patterns.
摘要:
A robot, which may accurately detect whether or not the robot is gripping an object, even without a tactile sensor, as a result of using a sorter that utilizes a torque generated from a joint of a hand and the shape of the hand as feature data, and a control method for the robot includes a state sensing unit to sense a state of the robot, a feature vector producing unit to extract feature data from the state sensing unit and to produce a feature vector using the feature data, and a learning-based data sorter to judge an operating state of the robot using the feature vector produced by the feature vector producing unit and to output the judged result.
摘要:
A server may include a communication circuit communicating with a user terminal, storage including a fingerprint DB storing fingerprints corresponding to a plurality of points and a signal fluctuation probability DB, and a processor electrically connected to the communication circuit and the storage. The processor may be configured to store similarity between first signal strength and second signal strength, which are determined based on a probability that a pair of the first signal strength and the second signal strength received from a first AP occurs with respect to fingerprints corresponding to a first point, in the signal fluctuation probability DB, to obtain a fingerprint including signal strength received from the first AP, from the user terminal, and to determine a location of the user terminal based on the obtained fingerprint and the signal fluctuation probability DB.
摘要:
Disclosed herein are a movable object and a movable object control method. The movable object control method may include acquiring an image of a movable object's surroundings, acquiring a signal having strength changing depending on a location of the movable object, generating a map on the basis of the signal and the image of the surroundings of the movable object, and applying the map to an algorithm to acquire a learned algorithm.
摘要:
An electronic device, capable of being placed on a cradle, may include a camera module configured to acquire an image, a sensor module configured to sense information regarding an orientation of the electronic device, a processor configured to determine a target orientation of the electronic device based on the acquired image and a communication module configured to transmit the information regarding the orientation of the electronic device and information regarding the target orientation of the electronic device to the cradle.