Abstract:
A method of manufacturing a polarizing plate includes: preparing a polarizer including a dichroic material, the polarizer being configured to polarize incident light; forming a protective film on at least one surface of the polarizer; and forming at least one transmission region by selectively radiating a femtosecond laser onto the polarizer, a group transmittance of the at least one transmission region being 80% or more.
Abstract:
A polarizer includes a reflective polarizer main body and an Rth compensation layer. The reflective polarizer main body includes a repetitively laminated structure, the repetitively laminated structure including two layers of different refractive indices repetitively disposed on one another. The Rth phase compensation layer is disposed at one side of the reflective polarizer main body. The Rth phase compensation layer is configured to compensate for a phase difference in an Rth direction.
Abstract:
Provided are a liquid crystal display including a liquid crystal display panel comprising a first substrate and a liquid crystal layer, an upper polarizer disposed on the liquid crystal display, a lower polarizer disposed under the liquid crystal display, and a first phase delay layer located on the liquid crystal display panel, configured to compensate for a phase delay value in a thickness direction and comprising parylene.
Abstract:
A liquid crystal display includes a substrate including a plurality of pixel areas, a color filter disposed in each of the plurality of pixel areas, and a liquid crystal layer positioned on a pixel electrode and filling a microcavity. A height of the liquid crystal layer corresponding to the color filter having a first color is different from a height of the liquid crystal layer corresponding to the color filter having a second color.
Abstract:
A display device includes an upper substrate, a lower substrate disposed opposite to the upper substrate, a photosensor disposed between the upper substrate and the lower substrate, a polarizer disposed on the upper substrate, and a retarder disposed on the polarizer, where light of elliptical polarization from outside is converted by a λ/4 phase difference, and transmitted to the photosensor sequentially through the retarder and the polarizer.
Abstract:
According to an embodiment of the disclosure, a display device includes a first electrode and a second electrode that are disposed on a substrate and spaced apart from each other, a light emitting element disposed between the first electrode and the second electrode, and an auxiliary electrode disposed on the substrate and overlapping the light emitting element such that the auxiliary electrode forms an electric field in an area where the light emitting element is disposed.
Abstract:
A display device is provided. The display device includes a light source; an optical member including a light guide plate, which has a first side surface facing the light source, and a light transmission blocking pattern, which is disposed along an edge of an upper surface of the light guide plate to transmit ultraviolet light and block visible light; a display panel disposed on the optical member; and a light shielding resin disposed between the optical member and the display panel and configured to overlap the light transmission blocking pattern and couple the optical member with the display panel.
Abstract:
Provided are display device and method of manufacturing a display device. a display device includes: a light guide plate; a low refractive layer disposed on one surface of the light guide plate and having a lower refractive index than a refractive index of the light guide plate; a wavelength conversion layer disposed on the low refractive layer; an optical pattern disposed on the other surface of the light guide plate and including a base film, a first pattern disposed on the base film and having a line shape extending in one direction, and a second pattern formed on a surface of the first pattern; and an adhesive layer disposed between the light guide plate and the base film, wherein the adhesive layer has a refractive index equal to or greater than the refractive index of the light guide plate.
Abstract:
A display device includes a plurality of pixels; a first substrate including a pixel electrode disposed in a pixel of the plurality of pixels, a second substrate facing the first substrate and including a color adjusting pattern, which is disposed in the pixel of the plurality of pixels, and a common electrode, which is disposed on the color adjusting patterns, and a liquid crystal layer interposed between the first substrate and the second substrate and including a liquid crystal and a dichroic dye, wherein the plurality of pixels include a first-color pixel, which is configured to display a first color, and a second-color pixel, which is configured to display a second color different from the first color, and the color adjusting pattern includes a first color adjusting pattern, which is disposed in the first-color pixel, and a second color adjusting pattern, which is disposed in the second-color pixel.
Abstract:
A liquid crystal display device includes a first polarizing film, a first compensation film on the first polarizing film, the first compensation film including a biaxial film, a second compensation film on the first compensation film, the second compensation film including a negative C-plate film, a substrate on the second compensation film, a liquid crystal layer on the substrate, a second polarizing film on the liquid crystal layer, and a color conversion filter on the second polarizing film.