Abstract:
An organic light emitting diode display according to an exemplary embodiment includes: a substrate; a pixel formed on the substrate and including a pixel area displaying an image and a peripheral area adjacent to the pixel area; an insulating layer at the pixel area and the peripheral area on the substrate; a first electrode at the pixel area on the insulating layer; an organic emission layer on the first electrode and extending to the peripheral area; a second electrode on the organic emission layer and disposed in the pixel area and the peripheral area; an auxiliary electrode in the peripheral area on the substrate and partially exposed by a first opening formed in the insulating layer; and an auxiliary member disposed on the auxiliary electrode and in contact with an upper surface of the auxiliary electrode exposed by the first opening.
Abstract:
A multi-functional apparatus for testing and etching a substrate capable of increasing spatial efficiency and manufacturing efficiency by performing testing and etching operations in a same chamber body and a substrate processing apparatus including the same, the multi-functional apparatus including a chamber body having an entrance into which the substrate is injected in one of its sides and an exit from which the substrate is ejected in another one of its sides; a transfer unit disposed inside of the chamber body and for transferring the injected substrate in a direction from the entrance to the exit; a laser etching unit disposed on an upper portion of the transfer unit and for etching a part of the substrate disposed on the transfer unit; and a testing unit for testing the substrate disposed on the transfer unit.
Abstract:
An organic light emitting diode display according to an exemplary embodiment includes: a substrate; a pixel formed on the substrate and including a pixel area displaying an image and a peripheral area adjacent to the pixel area; an insulating layer at the pixel area and the peripheral area on the substrate; a first electrode at the pixel area on the insulating layer; an organic emission layer on the first electrode and extending to the peripheral area; a second electrode on the organic emission layer and disposed in the pixel area and the peripheral area; an auxiliary electrode in the peripheral area on the substrate and partially exposed by a first opening formed in the insulating layer; and an auxiliary member disposed on the auxiliary electrode and in contact with an upper surface of the auxiliary electrode exposed by the first opening.
Abstract:
An organic light emitting diode display according to an exemplary embodiment includes: a substrate; a pixel formed on the substrate and including a pixel area displaying an image and a peripheral area adjacent to the pixel area; an insulating layer at the pixel area and the peripheral area on the substrate; a first electrode at the pixel area on the insulating layer; an organic emission layer on the first electrode and extending to the peripheral area; a second electrode on the organic emission layer and disposed in the pixel area and the peripheral area; an auxiliary electrode in the peripheral area on the substrate and partially exposed by a first opening formed in the insulating layer; and an auxiliary member disposed on the auxiliary electrode and in contact with an upper surface of the auxiliary electrode exposed by the first opening.
Abstract:
A display apparatus includes a display panel, a display panel driver and a first connection wire. The display panel includes a substrate and a display layer disposed on a first surface of the substrate. The display panel driver applies a driving signal to the display panel. The display panel driver is disposed on a second surface opposite to the first surface of the substrate. The first connection wire is disposed at a first side surface connecting the first and second surfaces of the substrate. The first connection wire connects electrically the display panel with the display panel driver.
Abstract:
A multi-functional apparatus for testing and etching a substrate capable of increasing spatial efficiency and manufacturing efficiency by performing testing and etching operations in a same chamber body and a substrate processing apparatus including the same, the multi-functional apparatus including a chamber body having an entrance into which the substrate is injected in one of its sides and an exit from which the substrate is ejected in another one of its sides; a transfer unit disposed inside of the chamber body and for transferring the injected substrate in a direction from the entrance to the exit; a laser etching unit disposed on an upper portion of the transfer unit and for etching a part of the substrate disposed on the transfer unit; and a testing unit for testing the substrate disposed on the transfer unit.
Abstract:
A multi-functional apparatus for testing and etching a substrate capable of increasing spatial efficiency and manufacturing efficiency by performing testing and etching operations in a same chamber body and a substrate processing apparatus including the same, the multi-functional apparatus including a chamber body having an entrance into which the substrate is injected in one of its sides and an exit from which the substrate is ejected in another one of its sides; a transfer unit disposed inside of the chamber body and for transferring the injected substrate in a direction from the entrance to the exit; a laser etching unit disposed on an upper portion of the transfer unit and for etching a part of the substrate disposed on the transfer unit; and a testing unit for testing the substrate disposed on the transfer unit.
Abstract:
A deposition apparatus is capable of checking, in real time, the thickness or uniformity of a thin layer which is formed. The deposition apparatus includes a moving unit to which a substrate is detachably fixed. A conveyer unit conveys the moving unit in a first direction or in an opposite direction to the first direction. A deposition unit includes at least one deposition assembly for depositing a deposition material on the substrate. A discharge data acquisition unit acquires data associated with the amount of the deposition material discharged per unit time from the at least one deposition assembly. A transmission unit transmits the data acquired by the discharge data acquisition unit.