Abstract:
A backplane for a display device and the display device are disclosed. In one aspect, the backplane includes a substrate, an active layer formed over the substrate including a channel region, a source region contacting a first side of the channel region, and a drain region contacting a second side of the channel region. The backplane further includes a gate electrode formed adjacent to the channel region, a source electrode electrically connected to the source region, and a drain electrode electrically connected to the drain region. The active layer includes a plurality of heat radiation pins that extend in a direction of the thickness of the active layer.
Abstract:
An organic light emitting diode (OLED) display device and a method of manufacturing the same. The device includes a substrate, a thin film transistor (TFT) on the substrate and including an active layer, a gate electrode, a source electrode, and a drain electrode, a first pixel electrode coupled to one of the source and drain electrodes, a rough portion on the first pixel electrode, a second pixel electrode on the rough portion and having a rough pattern, an intermediate layer on the second pixel electrode including an organic emission layer (EML), and an opposing electrode on the intermediate layer.
Abstract:
A thin film transistor (TFT) array substrate is provided that includes a TFT on a substrate. The TFT can include an active layer, gate electrode, source electrode, drain electrode, first insulating layer between the active layer and the gate electrode, and second insulating layer between the gate electrode and the source and drain electrodes. A pixel electrode is disposed on the first and second insulating layers. A capacitor including a lower electrode is disposed on a same layer as the gate electrode and an upper electrode. A third insulating layer directly between the second insulating layer and the pixel electrode and between the lower electrode and the upper electrode. A fourth insulating layer covers the source electrode, the drain electrode, and the upper electrode, and exposes the pixel electrode and can further expose a pad electrode.
Abstract:
A laser crystallization system is disclosed. In one embodiment, the laser crystallization system includes i) a mother substrate including first, second, and third display regions sequentially arranged in a first direction and ii) a stage for supporting the mother substrate and moving in the first direction and in a second direction. The system also includes i) a first laser irradiation unit for irradiating a first laser beam having a width greater than or identical to a width of a side of one of the display regions in the first direction and ii) a second laser irradiation unit spaced apart from the first laser irradiation unit and irradiating a second laser beam having a width greater than or identical to the width of the side in the first direction. Furthermore, the first and second laser beams may correspond to widths of sides of the first and third display regions.
Abstract:
In an organic light-emitting display device and a method of manufacturing the same, the organic light-emitting display device includes: a silicon layer formed on a substrate; and a thin film transistor (TFT) and an organic light-emitting device that are formed on the silicon layer. The silicon layer comprises a conductive doping silicon portion for forming a part of an active layer included in the TFT and an insulating intrinsic silicon portion surrounding the doping silicon portion. According to the organic light-emitting display device of the present invention, manufacturing costs may be reduced due to a reduction in the number of masks, and the manufacturing process of the organic light-emitting display device may be simplified.
Abstract:
An organic light emitting diode (OLED) display device and a method of manufacturing the same. The device includes a substrate, a thin film transistor (TFT) on the substrate and including an active layer, a gate electrode, a source electrode, and a drain electrode, a first pixel electrode coupled to one of the source and drain electrodes, a rough portion on the first pixel electrode, a second pixel electrode on the rough portion and having a rough pattern, an intermediate layer on the second pixel electrode including an organic emission layer (EML), and an opposing electrode on the intermediate layer.
Abstract:
An organic light-emitting display device including a TFT comprising an active layer, a gate electrode comprising a lower gate electrode and an upper gate electrode, and source and drain electrodes insulated from the gate electrode and contacting the active layer; an organic light-emitting device electrically connected to the TFT and comprising a pixel electrode formed in the same layer as where the lower gate electrode is formed; and a pad electrode electrically coupled to the TFT or the organic light emitting device and comprising a first pad electrode formed in the same layer as in which the lower gate electrode is formed, a second pad electrode formed in the same layer as in which the upper gate electrode is formed, and a third pad electrode comprising a transparent conductive oxide, the first, second, and third pad electrodes being sequentially stacked.
Abstract:
A laser crystallization system is disclosed. In one embodiment, the laser crystallization system includes i) a mother substrate including first, second, and third display regions sequentially arranged in a first direction and ii) a stage for supporting the mother substrate and moving in the first direction and in a second direction. The system also includes i) a first laser irradiation unit for irradiating a first laser beam having a width greater than or identical to a width of a side of one of the display regions in the first direction and ii) a second laser irradiation unit spaced apart from the first laser irradiation unit and irradiating a second laser beam having a width greater than or identical to the width of the side in the first direction. Furthermore, the first and second laser beams may correspond to widths of sides of the first and third display regions.
Abstract:
An organic light emitting diode (OLED) display device and a method of manufacturing the same. The device includes a substrate, a thin film transistor (TFT) on the substrate and including an active layer, a gate electrode, a source electrode, and a drain electrode, a first pixel electrode coupled to one of the source and drain electrodes, a rough portion on the first pixel electrode, a second pixel electrode on the rough portion and having a rough pattern, an intermediate layer on the second pixel electrode including an organic emission layer (EML), and an opposing electrode on the intermediate layer.
Abstract:
An organic light-emitting display device including a TFT comprising an active layer, a gate electrode comprising a lower gate electrode and an upper gate electrode, and source and drain electrodes insulated from the gate electrode and contacting the active layer; an organic light-emitting device electrically connected to the TFT and comprising a pixel electrode formed in the same layer as where the lower gate electrode is formed; and a pad electrode electrically coupled to the TFT or the organic light emitting device and comprising a first pad electrode formed in the same layer as in which the lower gate electrode is formed, a second pad electrode formed in the same layer as in which the upper gate electrode is formed, and a third pad electrode comprising a transparent conductive oxide, the first, second, and third pad electrodes being sequentially stacked.