Abstract:
An organic light emitting diode (OLED) display device and a method of manufacturing the same. The device includes a substrate, a thin film transistor (TFT) on the substrate and including an active layer, a gate electrode, a source electrode, and a drain electrode, a first pixel electrode coupled to one of the source and drain electrodes, a rough portion on the first pixel electrode, a second pixel electrode on the rough portion and having a rough pattern, an intermediate layer on the second pixel electrode including an organic emission layer (EML), and an opposing electrode on the intermediate layer.
Abstract:
An organic light emitting display device includes: a substrate; a thin film transistor (TFT) on the substrate and including an active layer, a gate electrode, a source electrode, and a drain electrode; an organic light emitting device including a pixel electrode that contacts at least one of the source electrode or the drain electrode of the TFT, an interlayer including a light emitting layer, and a counter electrode facing the pixel electrode, the pixel electrode, the interlayer, and the counter electrode being stacked; and a cathode contact part including a first contact layer and a second contact layer, the first contact layer being at a same layer as the active layer and being doped with ion impurities, the second contact layer including a same material as the source electrode and the drain electrode and coupling the first contact layer and the counter electrode to each other.
Abstract:
The present invention provides a display device and a method of driving the same. The display device includes: a light-emitting device; a first capacitor connected between a first contact point and a second contact point; a driving transistor including an input terminal connected to a first voltage, an output terminal, and a control terminal connected to the second contact point; a first switching transistor controlled by a first control signal and connected between a data voltage and the first contact point; a second switching transistor controlled by a second control signal and connected between a second voltage and the first contact point; a third switching transistor controlled by a third control signal and connected between the second contact point and the second voltage; a fourth switching transistor controlled by the first control signal and connected between the second contact point and the output terminal of the driving transistor; and a fifth switching transistor controlled by the second control signal and connected between the light-emitting device and the output terminal of the driving transistor.
Abstract:
An organic light emitting diode (OLED) display device and a method of manufacturing the same. The device includes a substrate, a thin film transistor (TFT) on the substrate and including an active layer, a gate electrode, a source electrode, and a drain electrode, a first pixel electrode coupled to one of the source and drain electrodes, a rough portion on the first pixel electrode, a second pixel electrode on the rough portion and having a rough pattern, an intermediate layer on the second pixel electrode including an organic emission layer (EML), and an opposing electrode on the intermediate layer.
Abstract:
A laser crystallization system is disclosed. In one embodiment, the laser crystallization system includes i) a mother substrate including first, second, and third display regions sequentially arranged in a first direction and ii) a stage for supporting the mother substrate and moving in the first direction and in a second direction. The system also includes i) a first laser irradiation unit for irradiating a first laser beam having a width greater than or identical to a width of a side of one of the display regions in the first direction and ii) a second laser irradiation unit spaced apart from the first laser irradiation unit and irradiating a second laser beam having a width greater than or identical to the width of the side in the first direction. Furthermore, the first and second laser beams may correspond to widths of sides of the first and third display regions.
Abstract:
An organic light emitting diode (OLED) display device and a method of manufacturing the same. The device includes a substrate, a thin film transistor (TFT) on the substrate and including an active layer, a gate electrode, a source electrode, and a drain electrode, a first pixel electrode coupled to one of the source and drain electrodes, a rough portion on the first pixel electrode, a second pixel electrode on the rough portion and having a rough pattern, an intermediate layer on the second pixel electrode including an organic emission layer (EML), and an opposing electrode on the intermediate layer.
Abstract:
A pixel includes an organic light emitting diode (OLED), a first transistor, a first capacitor, a second capacitor, and a pixel circuit. The OLED includes a cathode electrode connected to a second power source. The first transistor is connected between a data line and a first node, and turns on when a scan signal is supplied to a scan line. The first capacitor is connected between the first node and a third power source. The second capacitor is connected between the first node and a fourth power source. The pixel circuit controls a current quantity flowing from a first power source to the second power source through the OLED based on a voltage of the first node.
Abstract:
A thin film transistor (TFT) array substrate is provided that includes a TFT on a substrate. The TFT can include an active layer, gate electrode, source electrode, drain electrode, first insulating layer between the active layer and the gate electrode, and second insulating layer between the gate electrode and the source and drain electrodes. A pixel electrode is disposed on the first and second insulating layers. A capacitor including a lower electrode is disposed on a same layer as the gate electrode and an upper electrode. A third insulating layer directly between the second insulating layer and the pixel electrode and between the lower electrode and the upper electrode. A fourth insulating layer covers the source electrode, the drain electrode, and the upper electrode, and exposes the pixel electrode and can further expose a pad electrode.
Abstract:
A laser crystallization system is disclosed. In one embodiment, the laser crystallization system includes i) a mother substrate including first, second, and third display regions sequentially arranged in a first direction and ii) a stage for supporting the mother substrate and moving in the first direction and in a second direction. The system also includes i) a first laser irradiation unit for irradiating a first laser beam having a width greater than or identical to a width of a side of one of the display regions in the first direction and ii) a second laser irradiation unit spaced apart from the first laser irradiation unit and irradiating a second laser beam having a width greater than or identical to the width of the side in the first direction. Furthermore, the first and second laser beams may correspond to widths of sides of the first and third display regions.
Abstract:
An organic light emitting display apparatus includes a substrate; a thin film transistor which is disposed over the substrate; a first electrode which is disposed over the substrate and electrically connected to the thin film transistor; a passivation layer which covers the thin film transistor and contacts a predetermined region of an upper surface of the first electrode; an intermediate layer which is disposed over the first electrode, includes an organic emission layer, and contacts a predetermined region of the passivation layer; and a second electrode which is disposed over the intermediate layer.