Abstract:
A method is provided to control a hybrid powertrain, comprising: a) engaging a gear corresponding to either a gear pair connected with a first planetary gear in the gearbox or corresponding to a gear pair connected with a second planetary gear and an output shaft; b) selecting a gear by connecting two rotatable components in the first planetary gear with each other, via a first coupling device and/or connecting two rotatable components in the second planetary gear with each other, via a second coupling device; and c) controlling a switch such that a first electrical machine is set into a waiting state, if the second coupling device connects the two rotatable components of the second planetary gear with each other, and such that a second electrical machine is set into a waiting state, if the first coupling device connects the two rotatable components of the first planetary gear with each other.
Abstract:
A method is provided to control a hybrid powertrain to achieve gear shifts without torque interruption, comprising a gearbox with input shaft and output shafts; a first planetary gear connected to the input shaft and a first main shaft; a second planetary gear connected to the first planetary gear and a second main shaft; first and second electrical machines respectively connected to the first and second planetary gears; a first gear pair and a third gear pair between the first main shaft and a countershaft; and a second gear pair between the second main shaft and the countershaft, which is connected with the output shaft via a fifth gear pair. The method comprises disconnecting the first gear pair; connecting the first planetary gear with the output shaft via a coupling mechanism connecting the first main shaft and output shaft; disconnecting the fifth gear pair; transferring torque generated from the combustion engine from the second planetary gear to the countershaft via the second gear pair; and transferring a torque from the countershaft to the output shaft via the third gear pair.
Abstract:
In a method for controlling a vehicle with a drive system comprising an output shaft of a combustion engine and a planetary gear with a first and a second electrical machine, connected via their rotors to the components of the planetary gear, the combustion engine is started while the vehicle is driven by ensuring that the rotor of the second electrical machine is connected with the output shaft of the combustion engine, and controlling such electrical machine's rotational speed towards the combustion engine's idling speed, whereupon fuel injection into the combustion engine is carried out to start the latter.
Abstract:
Disclosed is a method for control a vehicle with a drive system comprising an output shaft of a combustion engine and a planetary gear with a first and a second electrical machine, connected via their rotors to the components of the planetary gear, the vehicle is started by controlling the first electrical machine to achieve a torque thereof, so that the requested torque is transmitted to the planetary gear's output shaft, and controlling the second electrical machine to achieve a torque, so that the desired power to electrical auxiliary aggregates and/or loads in the vehicle, and/or electric energy storage means, if present in the vehicle, for exchange of electric energy with the first and second electrical machine is achieved.
Abstract:
A gearbox that includes an input shaft (8) and an output shaft (20); a first epicyclic gear (10) connected to the input shaft (8); a second epicyclic gear (12) connected to the first epicyclic gear (10); a first electrical machine (14) connected to the first epicyclic gear (10); a second electrical machine (16) connected to the second epicyclic gear (12); a first gear pair (60) arranged between the first epicyclic gear (10) and the output shaft (20); and a second gear pair (66) arranged between the second epicyclic gear (12) and the output shaft (20); a first planet gear carrier (50) at the first epicyclic gear (10) connected to a second sun gear (32) at the second epicyclic gear (12); a first sun gear (26) at the first epicyclic gear (10) connected to a first main shaft (34); and a second planet gear carrier (51) at the second epicyclic gear (12) is connected to a second main shaft (36). A method for controlling the gearbox and a vehicle that includes a gearbox are also disclosed.
Abstract:
A method for starting a combustion engine (2) in a propulsion system (1) of a hybrid vehicle, the propulsion system includes a planetary gear having three components: a sun gear (10), a ring gear (11) and a planet wheel carrier (12). The output shaft (2a) of the combustion engine connected to a first component of the planetary gear, an input shaft (3a) of a gearbox (3) connected to a second component of the planetary gear and a rotor (9b) of an electric machine (9) connected to a third component of the gearbox. The vehicle is set in an initial position with a suitable gear engaged in the gearbox and with a brake acting on the input shaft of the gearbox. After the electric machine is controlled so that the ring gear is brought into a negative rotation speed (n3) and the output shaft (2a) of the combustion engine is, via the sun gear, brought to rotate with a positive rotation speed (n1) so that the combustion engine may be started.
Abstract:
A method for obtaining gear shifting of a vehicle, where the vehicle has a planetary gearing in the drive train, a combustion engine with an output shaft connected to a rotor of a second electric machine and to a first component of the planetary gearing, a first electric machine with a rotor connected to a third component of the planetary gearing and an input shaft of a gearbox connected to a second component of the planetary gearing. The method is started with the components of the planetary gearing interlocked by a locking means, in which they are released during the gear shifting and interlocked again after the gear shifting has been carried out.
Abstract:
A method is provided for moving off of a vehicle with a hybrid drive line, comprising a combustion engine; a gearbox with input shaft connected to the combustion engine and output shaft; a first planetary gear, which is connected to the input shaft, a first main shaft; a second planetary gear connected to the first planetary gear and a second main shaft; a first and second electrical machines respectively connected to the first and second planetary gears; a gear pair connected with the first main shaft; and a gear pair connected with the second main shaft. The method comprises: a) ensuring that the rotatable components of the first and second planetary gears are respectively disconnected from each other, b) ensuring that the corresponding gear pairs are engaged, and c) activating the first and second electrical machines so that a torque is generated in the output shaft.
Abstract:
In a method for controlling a vehicle with a drive system comprising a power unit configuration adapted to provide output for the vehicle's operation, and further comprising a planetary gear and a first and second electrical machine, connected to components in the planetary gear via their rotors, a locking means is moved from a locked position, in which two of the planetary gear's components are locked together, so that the three components of the planetary gear rotate with the same speed, to a release position, when the vehicle is driven with the locking means in a locked position, by carrying out the following method steps. The power unit configuration is controlled in order to achieve torque balance between the components that are locked together by the locking means, and such locking means are moved into a release position, when said torque balance prevails.
Abstract:
In a method for controlling a vehicle with a drive system comprising a power unit configuration adapted to provide power for the vehicle's operation, and further comprising a planetary gear and a first and second electrical machine, connected to components in the planetary gear via their rotors, a locking means is moved from a release position, in which the planetary gear's components are free to rotate independently of each other, to a locked position, in which two of the planetary gear's components are locked together, so that the three components in the planetary gear rotate with the same speed. The power unit configuration is controlled in order to achieve a synchronous, or substantially synchronous, rotational speed between the input and output shaft of the planetary gear, and the locking means are then moved to the locked position.