Abstract:
A given testing substrate for fast-testing many integrated-circuit electronic devices, one after the other, has a set of mutually insulated collated wiring areas that can be aligned with solder-bump I/O pads of the electronic devices. At the surface of each of the corrugated areas is located a layer that is an electrically conductive durable oxide, or that is itself durable, electrically conductive, and non-oxidizable. During testing, the solder-bump I/O pads of the electronic device being tested are aligned with and pressed against the corrugated wiring areas of the given substrate. Alternatively, the electronic devices being of the electrically programmable variety, such as EPROMs, programming voltages can be delivered to each of the devices, one after the other, through the corrugated wiring areas of a single substrate.
Abstract:
In wafer-scale-integrated assemblies, microminiature transmission lines are utilized as interconnects on the wafer. The extremely small cross-sectional area of a typical such line results in its total line resistance being relatively large. Such a line exhibits signal reflections and resonances. In practice, it is not feasible to eliminate these effects by conventional load termination techniques. As a result, the frequency at which digital signals can be transmitted over such a line is typically limited to well below its so-called resonance limit. In accordance with a feature of the invention, the structural parameters of each line are selected to meet specified design criteria that ensure optimal high-frequency performance of the line.
Abstract:
A multi-chip module is composed of two or more integrated-circuit chips located on a substrate such as a dielectrically coated silicon substrate. The chips are interconnected by means of transmission wiring lines. At least some of the chips contain one or more input buffer circuits, each composed of two branches ("legs"). Each such branch contains, in one embodiment, an n-channel MOS transistor connected in series with a pair of series-connected p-channel MOS transistors--whereby, in each such branch, one of the p-channel MOS transistors is located between (intermediate) the other of the p-channel MOS transistors and the n-channel MOS transistor of that same branch. On the other hand, in each buffer circuit, the intermediate p-channel MOS transistors of both branches are cross-coupled. Each of the n-channel MOS transistors is connected in a common gate configuration to receive one of the complementary input signals coming from the transmission wiring lines, and the other of the p-channel transistors in each branch is connected in a common source configuration to receive the other of the complementary input signals.
Abstract:
In accordance with the invention, a multichip circuit is fabricated by providing an active semiconductor substrate comprising a set of isolated components including active components such as transistors, forming on a surface of the substrate a plurality of paths incorporating components from the substrate for interconnecting a plurality integrated circuit devices, and mounting the ICs on the surface in contact with their respectively appropriate paths. The preferred active substrate is similar in structure to a silicon integrated circuit except that the circuit components are interconnected only by the paths interconnecting the ICs. Advantageously the ICs are surface mounted on the substrate.
Abstract:
A laser device is bonded to a diamond submount by means of a procedure including (1) codepositing an auxiliary layer, on a layer of barrier metal that has been deposited overlying the submount, followed by (2) depositing a wetting layer on the auxiliary layer, and (3) by depositing a solder layer comprising alternating metallic layers, preferably of gold and tin sufficient to form an overall tin-rich gold-tin eutectic composition. The barrier metal is typically W, Mo, Cr, or Ru. Prior to bonding, a conventional metallization such as Ti-Pt-Au (three layers) is deposited on the laser device's bottom ohmic contact, typically comprising Ge. Then, during bonding, the solder layer is brought into physical contact with the laser device's metallization under enough heat and pressure, followed by cooling, to form a permanent joint between them. The thickness of the solder layer is advantageously less than approximately 5 .mu.m. The wetting layer is preferably the intermetallic compound Ni.sub.3 Sn.sub.4, and the auxiliary layer is formed by codepositing the metallic components of this intermetallic together with the barrier metal.
Abstract:
In accordance with the present invention, an integrated circuit package comprises a thermally conductive plate for receiving an integrated circuit and an open rectangular structure of conductor and insulator for surrounding the sides of the circuit and presenting one or more linear arrays of conductive connectors extending laterally through the rectangular structure. Preferably the rectangular structure also includes transverse contacts. Advantageously the plate includes extensions beyond the rectangular structure for acting as cooling fins on opposing sides of the rectangular structure. The linear arrays and cooling fins are preferably on different pairs of parallel sides.
Abstract:
A precisely aligned optical fiber switch assembly. A base member has a vee groove for supporting a fixed optical fiber and a second optical fiber in optical alignment with the fixed fiber. The groove contains sections of different dimensions that receive and align sheathed portions of the fibers and groove sections that receive and align unsheathed portions of the fibers. First aligning means on the base member longitudinally position the fixed and second fibers in the groove. Covering means mate with the base member for covering at least part of the sheathed portions of the fibers. Aligning means position the covering means precisely with respect to the base member.
Abstract:
An m-input/n-output (e.g., 2.times.2) optical fiber switch is disclosed which alters the location of the fibers by the application of an external force. Illustratively, the switch uses a housing with a diamond-shaped opening extending therethrough, with pairs of optical fibers positioned in orthogonally located V-grooves. Upon the application of an external force, the fibers are moved into the remaining, vacant V-grooves formed by the diamond-shaped opening. In a preferred embodiment, a (2.times.2) switch is magnetically activated.
Abstract:
In the interest of enhanced yield in the manufacture of "wafer-scale" integrated circuits an assembly of integrated circuit chips is made by placing chips on a substrate. Chips have beveled edges as produced by crystallographically anisotropic chemical etching, and the substrate has wells, grooves, or openings having sloping walls. Chips are positioned on the substrate by bringing sloping walls and beveled edges in juxtaposition, and circuitry on chips is connected to circuitry on the substrate.
Abstract:
A method and apparatus for fabricating a device is disclosed, which method involves a new reactive ion etching technique. Both a high etch rate and, for example, a high etch selectivity are simultaneously achieved with the inventive reactive ion etching technique by discharging an electrode of the reactive ion etching apparatus in response to a preselected criterion, e.g., a magnitude of a DC bias at said electrode which equals, or exceeds, a preselected value.