摘要:
A power semiconductor module includes a module housing with a sealing ring on its top side. The sealing ring, in co-operation with the module housing and a printed circuit board attached to the power semiconductor module, hermetically seals feed-through locations at the top side of the module housing for feeding through electric terminals of the power semiconductor module. On the bottom side of the module housing a sealing ring hermetically seals the bottom side of the module housing.
摘要:
A power semiconductor module includes a module housing with a sealing ring on its top side. The sealing ring, in co-operation with the module housing and a printed circuit board attached to the power semiconductor module, hermetically seals feed-through locations at the top side of the module housing for feeding through electric terminals of the power semiconductor module. On the bottom side of the module housing a sealing ring hermetically seals the bottom side of the module housing.
摘要:
A power semiconductor module includes a package having a first package portion and a second package portion. The side of the first package portion facing the second package portion has an anchoring element with a first recess. The second package portion includes a second recess with an indentation which receives the anchoring element. To produce a mechanically firm connection between the first package portion and the second package portion, a plug-in element is inserted in the first recess and the second recess. The plug-in element displaces the anchoring element transversely with respect to the plug-in direction, causing the anchoring element to engage the indentation so that a form-fit connection is produced between the first package portion and the second package portion. The plug-in element prevents the anchoring element from disengaging the indentation.
摘要:
The invention relates to a power semiconductor module including a module housing and at least one substrate populated with at least one power semiconductor chip. The module housing has a bottom side and a top side spaced away from the bottom side in a positive vertical direction. In addition, the substrate has a bottom side facing away from an interior of the module housing. The substrate is arranged in an opening of the module housing configured in its bottom side and attached to the module housing by a resilient bonding agent for freedom of movement of the substrate parallel to the vertical direction in relation to the module housing. In the non-mounted condition of the power semiconductor module, the substrate assumes a resting position in relation to the module housing. To deflect the substrate from the resting position parallel to the vertical direction, a deflection force of 0.1 N to 100 N per mm is applied.
摘要:
A power semiconductor module system includes a power semiconductor module, a heat sink and at least one fastener. The power semiconductor module includes a bottom side with a first thermal contact surface and the heat sink includes a top side with a second thermal contact surface. The power semiconductor module is conjoined with the heat sink by means of the at least one fastener. The power semiconductor module includes a number N1≧1 of first positioning elements and the heat sink a number N2≧1 of second positioning elements. Each of the first positioning elements corresponds to one of the second positioning elements and forms a pair therewith. The power semiconductor module and the heat sink are alignable relative to one another so that the two positioning elements of each of the pairs are interfitted when the power semiconductor module is mounted on the heat sink.
摘要:
A power semiconductor module system includes a power semiconductor module, a heat sink and at least one fastener. The power semiconductor module includes a bottom side with a first thermal contact surface and the heat sink includes a top side with a second thermal contact surface. The power semiconductor module is conjoined with the heat sink by means of the at least one fastener. The power semiconductor module includes a number N1≧1 of first positioning elements and the heat sink a number N2≧1 of second positioning elements. Each of the first positioning elements corresponds to one of the second positioning elements and forms a pair therewith. The power semiconductor module and the heat sink are alignable relative to one another so that the two positioning elements of each of the pairs are interfitted when the power semiconductor module is mounted on the heat sink.
摘要:
A semiconductor assembly, power semiconductor module, a housing and methods for assembling the power semiconductor housing is disclosed. One embodiment provides an electrically insulating substrate has an inner housing having a cover and a peripheral rim, and at least one pressure element arranged adjacent a side-face of the peripheral rim. The pressure element is resiliently coupled to the inner housing.
摘要:
A power semiconductor module has a heat-dissipation contact surface (16) for a thermally conductive connection to a cooling element (17). The module can be simply, cost-effectively and reliably fixed to the cooling element for the conduction of heat to the latter by at least one pressure element (18, 19) which is permanently connected to the power semiconductor module. When mounted, the pressure element (18) presses the heat-dissipation contact surface (16) against the cooling element (17).
摘要:
In order to fix a semiconductor module to a heat sink, the semiconductor module and the heat sink are clamped together by one or more clips made of spring material, i.e. spring clips. A mutually matched form of the spring clips optimizes the connection between the heat sink and the semiconductor modules. A respective connection of clip body and heat sink or semiconductor module is advantageously effective in such a way that the spring clip can be inserted into a respective spring clip receptacle and holds automatically on/in the heat sink or semiconductor module.
摘要:
A method for producing a housing part for a power semiconductor module includes providing a connecting lug having a lower end with a foot region, providing a housing having a side wall with a lead-in bevel, and inserting the connecting lug into the lead-in bevel so that the foot region projects inward into an interior of the housing. The method further includes encapsulating at least a portion of the foot region of the connecting lug inserted into the lead-in bevel with a first plastic to produce a positively locking first connection between the connecting lug and the side wall.