Abstract:
In a semiconductor memory device, static memory cells are arranged in rows and columns, word lines correspond to respective memory cell rows, and word line drivers drive correspond to word lines. Cell power supply lines correspond to respective memory cell columns and are coupled to cell power supply nodes of a memory cell in a corresponding column. Down power supply lines are arranged corresponding to respective memory cell columns, maintained at ground voltage in data reading and rendered electrically floating in data writing. Write assist elements are arranged corresponding to the cell power supply lines, and according to a write column instruction signal for stopping supply of a cell power supply voltage to the cell power supply line in a selected column, and for coupling the cell power supply line arranged corresponding to the selected column at least to the down power supply line on the corresponding column.
Abstract:
In a region just below an access gate electrode in an SRAM memory cell, a second halo region is formed adjacent to a source-drain region and a first halo region is formed adjacent to a first source-drain region. In a region just below a drive gate electrode, a third halo region is formed adjacent to the third source-drain region and a fourth halo region is formed adjacent to a fourth source-drain region. The second halo region is set to have an impurity concentration higher than the impurity concentration of the first halo region. The third halo region is set to have an impurity concentration higher than the impurity concentration of the fourth halo region. The impurity concentration of the first halo region and the impurity concentration of the fourth halo region are different from each other.
Abstract:
In a region just below an access gate electrode in an SRAM memory cell, a second halo region is formed adjacent to a source-drain region and a first halo region is formed adjacent to a first source-drain region. In a region just below a drive gate electrode, a third halo region is formed adjacent to the third source-drain region and a fourth halo region is formed adjacent to a fourth source-drain region. The second halo region is set to have an impurity concentration higher than the impurity concentration of the first halo region. The third halo region is set to have an impurity concentration higher than the impurity concentration of the fourth halo region. The impurity concentration of the first halo region and the impurity concentration of the fourth halo region are different from each other.
Abstract:
In a semiconductor memory device, static memory cells are arranged in rows and columns, word lines correspond to respective memory cell rows, and word line drivers drive correspond to word lines. Cell power supply lines correspond to respective memory cell columns and are coupled to cell power supply nodes of a memory cell in a corresponding column. Down power supply lines are arranged corresponding to respective memory cell columns, maintained at ground voltage in data reading and rendered electrically floating in data writing. Write assist elements are arranged corresponding to the cell power supply lines, and according to a write column instruction signal for stopping supply of a cell power supply voltage to the cell power supply line in a selected column, and for coupling the cell power supply line arranged corresponding to the selected column at least to the down power supply line on the corresponding column.
Abstract:
In a semiconductor memory device, static memory cells are arranged in rows and columns, word lines correspond to respective memory cell rows, and word line drivers drive correspond to word lines. Cell power supply lines correspond to respective memory cell columns and are coupled to cell power supply nodes of a memory cell in a corresponding column. Down power supply lines are arranged corresponding to respective memory cell columns, maintained at ground voltage in data reading and rendered electrically floating in data writing. Write assist elements are arranged corresponding to the cell power supply lines, and according to a write column instruction signal for stopping supply of a cell power supply voltage to the cell power supply line in a selected column, and for coupling the cell power supply line arranged corresponding to the selected column at least to the down power supply line on the corresponding column.