Abstract:
A semiconductor device includes: a first conductivity type semiconductor substrate made of silicon carbide; a second conductivity type body region in a device region of the semiconductor substrate; a first conductivity type source region formed in the body region; and a gate electrode formed on the body region through gate insulating films. The semiconductor device further includes, in a termination region of the semiconductor substrate, second conductivity type RESURF layers, and an edge termination region formed in the RESURF layers. Then, the RESURF layers and a front surface of the semiconductor substrate adjacent to the RESURF layers are covered by an oxidation-resistant insulating film.
Abstract:
In a silicon carbide semiconductor device having a trench type MOS gate structure, the present invention makes it possible to inhibit the operating characteristic from varying. A p-type channel layer having an impurity concentration distribution homogeneous in the depth direction at the sidewall part of a trench is formed by applying angled ion implantation of p-type impurities to a p−type body layer formed by implanting ions having implantation energies different from each other two or more times after the trench is formed. Further, although the p-type impurities are introduced also into an n−-type drift layer at the bottom part of the trench when the p-type channel layer is formed by the angled ion implantation, a channel length is stipulated by forming an n-type layer having an impurity concentration higher than those of the p-type channel layer, the p−-type body layer, and the n−-type drift layer between the p−-type body layer and the n−-type drift layer. By those measures, it is possible to inhibit the operating characteristic from varying.
Abstract:
The present invention makes it possible to improve the accuracy of wet etching and miniaturize a semiconductor device in the case of specifying an active region of a vertical type power MOSFET formed over an SiC substrate by opening an insulating film over the substrate by the wet etching. After a silicon oxide film having a small film thickness and a polysilicon film having a film thickness larger than the silicon oxide film are formed in sequence over an epitaxial layer, the polysilicon film is opened by a dry etching method, successively the silicon oxide film is opened by a wet etching method, and thereby the upper surface of the epitaxial layer in an active region is exposed.
Abstract:
A manufacturing method of a junction field effect transistor includes the steps of: (a) forming an n+-type source layer on a surface of an n−-type drift layer formed on an n+-type SiC substrate; (b) forming a plurality of shallow trenches disposed at predetermined intervals by etching the surface of the n−-type drift layer with a silicon oxide film formed on the n−-type drift layer used as a mask; (c) forming an n-type counter dope layer by doping the n−-type drift layer below each of the shallow trenches with nitrogen by using a vertical ion implantation method; (d) forming a sidewall spacer on each sidewall of the silicon oxide film and the shallow trenches; and (e) forming a p-type gate layer by doping the n−-type drift layer below each of shallow trenches with aluminum by using the vertical ion implantation method.
Abstract:
A drift layer is formed over a semiconductor substrate which is an SiC substrate. The drift layer includes first to third n-type semiconductor layers and a p-type impurity region. Herein, an impurity concentration of the second n-type semiconductor layer is higher than an impurity concentration of the first n-type semiconductor layer and an impurity concentration of the third n-type semiconductor layer. Also, in plan view, the second semiconductor layer located between the p-type impurity regions adjacent to each other overlaps with at least a part of a gate electrode formed in a trench.
Abstract:
First and second p-type semiconductor regions (electric-field relaxation layers) are formed by ion implantation using a dummy gate and side wall films on both sides of the dummy gate as a mask. In this manner, it is possible to reduce a distance between the first p-type semiconductor region and a trench and a distance between the second p-type semiconductor region and the trench, and symmetry of the first and second p-type semiconductor regions with respect to the trench can be enhanced. As a result, semiconductor elements can be miniaturized, and on-resistance and an electric-field relaxation effect, which are in a trade-off relationship, can be balanced, so that characteristics of the semiconductor elements can be improved.
Abstract:
In a semiconductor device, in a gate insulating film which is formed on/over an inner wall of a trench, the film thickness of a part of a gate insulating film formed so as to cover a corner of the trench is made thicker than the film thickness of apart of the gate insulating film part formed on/over a side face of the trench.
Abstract:
In order to secure the performance of a SiC-based JFET having an impurity diffusion rate lower than silicon-based one, a gate depth is secured while precisely controlling a distance between gate regions, instead of forming gate regions by ion implantation into the side wall of a trench. This means that a channel region defined by a gate distance and a gate depth should have a high aspect ratio. Further, due to limitations of process, a gate region is formed within a source region. Formation of a highly doped PN junction between source and gate regions causes various problems such as inevitable increase in junction current. In addition, a markedly high energy ion implantation becomes necessary for the formation of a termination structure. In the invention, provided is a vertical channel type SiC power JFET having a floating gate region below and separated from a source region and between gate regions.
Abstract:
An n-type epitaxial layer is formed on an n-type semiconductor substrate made of silicon carbide. p-type body regions are formed in the epitaxial layer, and n-type source region is formed in the body region. On the body region between the source region and the epitaxial layer, a gate electrode is formed via a gate dielectric film, and an interlayer insulating film having an opening is formed so as to cover the gate electrode. A source electrode electrically connected to the source region and the body regions is formed in the opening. A recombination layer is formed between the body region and a basal plane dislocation is a layer having point defect density higher than that of the epitaxial layer located directly under the recombination layer or having a metal added to the epitaxial layer.
Abstract:
A drift layer is formed over a semiconductor substrate which is an SiC substrate. The drift layer includes first to third n-type semiconductor layers and a p-type impurity region. Herein, an impurity concentration of the second n-type semiconductor layer is higher than an impurity concentration of the first n-type semiconductor layer and an impurity concentration of the third n-type semiconductor layer. Also, in plan view, the second semiconductor layer located between the p-type impurity regions adjacent to each other overlaps with at least a part of a gate electrode formed in a trench.