Abstract:
A method of selecting a mode for an SPS receiver includes selecting either a first mode or a second mode for the SPS receiver based on a comparison between an output power of a communications transceiver and a mode switch point wherein the mode switch point is a power value. The first mode corresponds to a first bias current value of the SPS receiver, the second mode corresponds to a second bias current value of the SPS receiver, and the first bias current value is different from the second bias current value.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive an antenna switch selection associated with a dual connectivity antenna configuration, wherein the antenna switch selection is associated with a first radio access technology (RAT) and the dual connectivity antenna configuration permits communication via the first RAT and a second RAT; determine, based at least in part on the antenna switching selection, a quantity of communication chains, associated with the first RAT, that are affected by an antenna switching process of the second RAT; and selectively permit, based at least in part on the quantity of communication chains, a reconfiguration of the dual connectivity antenna configuration according to the antenna switch selection. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communications are described. More specifically, the methods, systems, and devices support extending capability signaling to support higher modulation order baseband capability, such as higher order quadrature amplitude modulation (QAM), for example, 1024QAM. By way of example, a user equipment (UE) may transmit UE capability information to a base station (e.g., eNodeB (eNB), next-generation NodeB ((gNB)) in a connection establishment procedure. The UE capability information may include a UE category identifier and a baseband capability parameter. The baseband capability parameter may indicate a scaling factor for a first modulation order of a plurality of available modulation orders. The UE may communicate with the base station over multiple layers using corresponding modulation orders for the multiple layers.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may adaptively switch between hybrid automatic repeat request (HARQ) monitoring modes to support power savings. In a first HARQ skipping mode, the UE may transmit an uplink message corresponding to a HARQ identifier and may receive a positive acknowledgment (ACK) message in a HARQ monitoring occasion associated with the HARQ identifier. Upon receiving the ACK message, the UE refrains from monitoring a subsequent HARQ monitoring occasion associated with the HARQ identifier while in the first HARQ skipping mode (e.g., an aggressive HARQ skipping mode). The UE may periodically enter a periodic evaluation mode from the first HARQ skipping mode, in which the UE monitors a subsequent HARQ monitoring occasion after receiving an ACK message to check for false ACK messages. If a false ACK message is detected, the UE enters a first HARQ skipping prohibited mode.
Abstract:
The present disclosure relates to pseudo-randomization of unused resources at a medium access control layer (MAC) of a user equipment (UE). For example, the disclosure presents a method and an apparatus for determining that an uplink (UL) resource grant, associated with a first radio access technology (RAT), for the UE results in unused resources where there are a greater number of resources than available data for transmission at the UE, wherein the UE is configured to receive information associated with a second RAT, and wherein the first RAT is different from the second RAT, populating the unused resources, at a medium access control (MAC) layer, with pseudo-randomized bits, and transmitting at least a portion of the available data and the populated unused resources using the UL resource grant associated with the first RAT. As such, pseudo-randomization of unused resources at a medium access control layer (MAC) of a UE may be achieved.
Abstract:
A device includes a low noise amplifier (LNA) for amplifying an input signal, with the LNA including a first transistor configured to receive the input signal, a second transistor configured to receive a bias current and forming a current mirror for the first transistor, and an operational amplifier (op amp) operative to generate a bias voltage for the first and second transistors to match operating points of the first and second transistors.
Abstract:
A user equipment (UE) can connect to an evolved universal terrestrial radio access network (E-UTRAN) new radio (NR) dual-connectivity (EN-DC) network using both a Long Term Evolution (LTE) anchor link and a 5G NR non-anchor link. The UE shares RF chain components (e.g., antennas) between the LTE and NR links. The UE uses various techniques for controlling or modifying NR sounding reference signal (SRS) transmissions and/or LTE operations to avoid interruption on LTE operations due to NR SRS transmissions.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may adaptively switch between hybrid automatic repeat request (HARQ) monitoring modes to support power savings. In a first HARQ skipping mode, the UE may transmit an uplink message corresponding to a HARQ identifier and may receive a positive acknowledgment (ACK) message in a HARQ monitoring occasion associated with the HARQ identifier. Upon receiving the ACK message, the UE refrains from monitoring a subsequent HARQ monitoring occasion associated with the HARQ identifier while in the first HARQ skipping mode (e.g., an aggressive HARQ skipping mode). The UE may periodically enter a periodic evaluation mode from the first HARQ skipping mode, in which the UE monitors a subsequent HARQ monitoring occasion after receiving an ACK message to check for false ACK messages. If a false ACK message is detected, the UE enters a first HARQ skipping prohibited mode.
Abstract:
Methods and systems for evaluating Global Navigation Satellite System (GNSS) signals are provided. Each of a first GNSS signal received by a GNSS receiver and a second GNSS signal received by the GNSS receiver is accessed. The second GNSS signal can have temporal fluctuations weaker than temporal fluctuations in the first GNSS signal. A delay between a sequence in the first GNSS signal and a corresponding sequence signal in the second GNSS signal is estimated and compared to a threshold. Upon determining that the delay exceeds the threshold, a location is estimated using both the first GNSS signal and the second GNSS signal.
Abstract:
The present disclosure relates to pseudo-randomization of unused resources at a medium access control layer (MAC) of a user equipment (UE). For example, the disclosure presents a method and an apparatus for determining that an uplink (UL) resource grant, associated with a first radio access technology (RAT), for the UE results in unused resources where there are a greater number of resources than available data for transmission at the UE, wherein the UE is configured to receive information associated with a second RAT, and wherein the first RAT is different from the second RAT, populating the unused resources, at a medium access control (MAC) layer, with pseudo-randomized bits, and transmitting at least a portion of the available data and the populated unused resources using the UL resource grant associated with the first RAT. As such, pseudo-randomization of unused resources at a medium access control layer (MAC) of a UE may be achieved.