Abstract:
The present disclosure relates to pseudo-randomization of unused resources at a medium access control layer (MAC) of a user equipment (UE). For example, the disclosure presents a method and an apparatus for determining that an uplink (UL) resource grant, associated with a first radio access technology (RAT), for the UE results in unused resources where there are a greater number of resources than available data for transmission at the UE, wherein the UE is configured to receive information associated with a second RAT, and wherein the first RAT is different from the second RAT, populating the unused resources, at a medium access control (MAC) layer, with pseudo-randomized bits, and transmitting at least a portion of the available data and the populated unused resources using the UL resource grant associated with the first RAT. As such, pseudo-randomization of unused resources at a medium access control layer (MAC) of a UE may be achieved.
Abstract:
Method, computer program product, and apparatus for signal tracking and decoding in GNSS are disclosed. In one exemplary implementation, a satellite receiver may be configured to receive a first sub-frame of a satellite signal. It defers a determination of validity of the first sub-frame until a preamble of a second sub-frame is received. The satellite receiver receives the preamble of the second sub-frame, and then determines whether there is a data decoding error of the first sub-frame using the first sub-frame and the preamble of the second sub-frame.
Abstract:
Methods and systems for evaluating Global Navigation Satellite System (GNSS) signals are provided. Each of a first GNSS signal received by a GNSS receiver and a second GNSS signal received by the GNSS receiver is accessed. The second GNSS signal can have temporal fluctuations weaker than temporal fluctuations in the first GNSS signal. A delay between a sequence in the first GNSS signal and a corresponding sequence signal in the second GNSS signal is estimated and compared to a threshold. Upon determining that the delay exceeds the threshold, a location is estimated using both the first GNSS signal and the second GNSS signal.
Abstract:
The present disclosure relates to pseudo-randomization of unused resources at a medium access control layer (MAC) of a user equipment (UE). For example, the disclosure presents a method and an apparatus for determining that an uplink (UL) resource grant, associated with a first radio access technology (RAT), for the UE results in unused resources where there are a greater number of resources than available data for transmission at the UE, wherein the UE is configured to receive information associated with a second RAT, and wherein the first RAT is different from the second RAT, populating the unused resources, at a medium access control (MAC) layer, with pseudo-randomized bits, and transmitting at least a portion of the available data and the populated unused resources using the UL resource grant associated with the first RAT. As such, pseudo-randomization of unused resources at a medium access control layer (MAC) of a UE may be achieved.
Abstract:
Methods and systems for evaluating Global Navigation Satellite System (GNSS) signals are provided. Each of a first GNSS signal received by a GNSS receiver and a second GNSS signal received by the GNSS receiver is accessed. The second GNSS signal can have temporal fluctuations weaker than temporal fluctuations in the first GNSS signal. A delay between a sequence in the first GNSS signal and a corresponding sequence signal in the second GNSS signal is estimated and compared to a threshold. Upon determining that the delay exceeds the threshold, a location is estimated using both the first GNSS signal and the second GNSS signal.