Abstract:
Systems and methods are disclosed for sharing network feedback information. The method may include establishing, at a first access terminal, a wireless link with an access point, receiving network configuration data from the access point, composing a network feedback expression that indicates a status or availability of at least one network service associated with the access point, and transmitting the network feedback expression to a second access terminal via a D2D link.
Abstract:
In an embodiment, a user equipment (UE) determines an emergency health condition for a user that is defined based on a set of health-related parameters crossing a corresponding set of thresholds. The UE receives health data from a set of health monitoring sensors that are each configured to monitor one or more health-related parameters of the user. The UE detects, while a restricted mode restricting access to a set of communicative functions of the UE is active, that the emergency health condition for the user exists based on the received health data indicating that the set of health-related parameters have crossed the corresponding set of thresholds. The UE disables the restricted mode in response to the detecting. The UE conveys, using one or more communicative functions from the set of communicative functions that are made available by the disabling of the restricted mode, an alarm related to the detected emergency health condition for the user.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may adjust a basic safety message generation periodicity based at least in part on a semi-persistent scheduling periodicity for transmitting basic safety messages. The UE may generate one or more basic safety messages based at least in part on the adjusted basic safety message generation periodicity. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) and another device (e.g., another UE) may transmit messages on a shared channel accessed in a half-duplex manner (e.g., within a vehicle-to-everything (V2X) network). The UE and the other device may transmit messages on semi-persistently scheduled (SPS) resources. A message of the UE and a transmission of the other device may collide (e.g., be transmitted in the same subframe). The UE may employ muting and measuring, in which the UE may refrain from transmitting on a SPS resource and may detect the transmission of the other device. Upon detection of other transmissions, the UE may perform resource reselection. During resource selection or resource reselection, the UE may exclude an entire subframe of candidate resources if one of the candidate resources of the subframe is mapped to a resource associated with a transmission from another device.
Abstract:
Various examples include methods for assisting Global Positioning System (GPS) applications using a Long Term Evolution (LTE) subscription on a wireless communication device. Various example methods may include determining whether positioning information can be obtained from a first network associated with the LTE subscription, obtaining the positioning information from the first network through the LTE subscription in response to determining that the positioning information can be obtained from the first network, translating the positioning information into a format recognizable to a GPS application executing on the wireless communication device, and providing the positioning information to the GPS application.
Abstract:
The disclosure discloses enabling/disabling receive diversity, including determining the UE in a receive diversity enabled state; comparing a first and second receive chain filtered channel chip energy to interference density ratio to an EcI0 threshold, wherein the first and second receive chain filtered channel chip energy to interference density ratios are based on at least two power measurements obtained in the receive diversity enabled state; comparing a first receive chain measured number of Ec/I0 samples below EcI0_LCR_thrshld to a non-receive diversity threshold, wherein the first receive chain measured number of Ec/I0 samples is based on the first receive chain filtered channel chip energy to interference density ratio; and comparing a second receive chain measured number of Ec/I0 samples below EcI0_LCR_thrshld to the non-receive diversity threshold, wherein the second receive chain measured number of Ec/I0 samples is based on the second receive chain filtered channel chip energy to interference density ratio.
Abstract:
Various embodiments include methods for reporting quality metrics of a wireless communication device to a network that includes scheduling, on the wireless communication device, a tune-away from a first carrier of a first subscription to a second subscription. Quality metrics of the first carrier before the tune-away begins are calculated and stored as frozen quality metrics. During the tune-away, the wireless communication device sends the stored frozen quality metrics to the network. The stored frozen quality metrics may continue to be sent to the network as long as the duration of the tune-away is shorter than a time threshold. If the duration of the tune-away exceeds the time threshold, the wireless communication device may calculate and send actual quality metrics of the carrier to the network.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) and another device (e.g., another UE) may transmit messages on a shared channel accessed in a half-duplex manner (e.g., within a vehicle-to-everything (V2X) network). The UE and the other device may transmit messages on semi-persistently scheduled (SPS) resources. A message of the UE and a transmission of the other device may collide (e.g., be transmitted in the same subframe). The UE may employ muting and measuring, in which the UE may refrain from transmitting on a SPS resource and may detect the transmission of the other device. Upon detection of other transmissions, the UE may perform resource reselection. During resource selection or resource reselection, the UE may exclude an entire subframe of candidate resources if one of the candidate resources of the subframe is mapped to a resource associated with a transmission from another device.
Abstract:
The disclosure discloses enabling/disabling receive diversity, including determining the UE in a receive diversity enabled state; comparing a first and second receive chain filtered channel chip energy to interference density ratio to an EcI0 threshold, wherein the first and second receive chain filtered channel chip energy to interference density ratios are based on at least two power measurements obtained in the receive diversity enabled state; comparing a first receive chain measured number of Ec/I0 samples below EcI0_LCR_thrshld to a non-receive diversity threshold, wherein the first receive chain measured number of Ec/I0 samples is based on the first receive chain filtered channel chip energy to interference density ratio; and comparing a second receive chain measured number of Ec/I0 samples below EcI0_LCR_thrshld to the non-receive diversity threshold, wherein the second receive chain measured number of Ec/I0 samples is based on the second receive chain filtered channel chip energy to interference density ratio.
Abstract:
Various embodiments include methods for reporting quality metrics of a wireless communication device to a network that includes scheduling, on the wireless communication device, a tune-away from a first carrier of a first subscription to a second subscription. Quality metrics of the first carrier before the tune-away begins are calculated and stored as frozen quality metrics. During the tune-away, the wireless communication device sends the stored frozen quality metrics to the network. The stored frozen quality metrics may continue to be sent to the network as long as the duration of the tune-away is shorter than a time threshold. If the duration of the tune-away exceeds the time threshold, the wireless communication device may calculate and send actual quality metrics of the carrier to the network.