Abstract:
Methods, systems, and devices for wireless communication are described for redirection of a session initiation protocol (SIP) INVITE. A multi-subscriber identification module user equipment (multi-SIM UE) may intelligently determine when to redirect a SIP INVITE message to control on which of multiple networks a communication session is established. The multi-SIM UE may receive a SIP INVITE from a first user equipment (UE) requesting to establish a SIP session on a first network, the SIP INVITE including a first network address of the multi-SIM UE that is associated with a first SIM of the multi-SIM UE. The multi-SIM UE may, based at least in part on determining that a redirection criterion is satisfied, transmit a SIP redirection response including a second network address of the multi-SIM UE on a second network that is associated with a second SIM of the multi-SIM UE.
Abstract:
Methods, devices, and systems of various embodiments are disclosed for managing an unmanned aerial vehicle (UAV) charging station having a docking terminal. In various embodiments, a priority of a first UAV and a second UAV may be determined for using the docking terminal when a docking request is received from the second UAV while the first UAV occupies the docking terminal. In some embodiments, the priorities of the first and second UAVs may be based on an available power level of each of the first and second UAVs. The first UAV may be instructed to undock from the docking terminal in response to determining that the second UAV has a higher priority.
Abstract:
A method, an apparatus, and a non-transitory computer readable medium for receiving data and one or more redundant equivalent versions of the data from a remote user equipment (UE), buffering the data and the one or more redundant equivalent versions of the data, transmitting the data to a base station, receiving at least one negative acknowledgement, relating to the data, from the base station indicating an unsuccessful reception of the data; and transmitting, in response to receiving the at least one negative acknowledgement, at least one of the one or more redundant equivalent versions of the data to the base station.
Abstract:
Aspects of the present disclosure relate to a multimode user equipment (UE) that when suffering a power crunch, can intelligently reselect to another RAT to extend the battery life of the UE. The reselected RAT has a lower specified maximum transmit power relative to the currently attached RAT. Therefore, the UE may reduce its battery drain to extend its service time per charge when a call is made utilizing the reselected RAT. The UE intelligently selects the RAT that will likely consume less uplink transmit power to communicate with a base station in order to conserve battery power in a poor coverage area, when the UE is experiencing a power crunch condition.
Abstract:
A method, an apparatus, and a non-transitory computer readable medium for receiving data and one or more redundant equivalent versions of the data from a remote user equipment (UE), buffering the data and the one or more redundant equivalent versions of the data, transmitting the data to a base station, receiving at least one negative acknowledgement, relating to the data, from the base station indicating an unsuccessful reception of the data; and transmitting, in response to receiving the at least one negative acknowledgement, at least one of the one or more redundant equivalent versions of the data to the base station.
Abstract:
Methods, devices, and systems of various embodiments are disclosed for managing a vehicle charging station having a docking terminal. In various embodiments, a priority of a first autonomous vehicle and a second autonomous vehicle may be determined for using the docking terminal when a docking request is received from the second autonomous vehicle while the first autonomous vehicle occupies the docking terminal. In some embodiments, the priorities of the first and second autonomous vehicles may be based on an available power level of each of the first and second autonomous vehicles. The first autonomous vehicle may be instructed to undock from the docking terminal in response to determining that the second autonomous vehicle has a higher priority.
Abstract:
One aspect of the present application provides a Category M apparatus that communicates over a communication network. The apparatus comprises a processor and an interface. The processor is configured to generate a message requesting registration of the apparatus with a core network, the message generated to include at least one header indicating a power saving mode capability of the apparatus. The processor is further configured to schedule sleep periods and wakeup times for the apparatus. The interface is configured to transmit the message to the core network. The interface is further configured to receive a response, from the core network, including one or more parameters and one or more timers established by the core network based at least in part on the power saving mode capability of the apparatus.
Abstract:
A method, an apparatus, and a non-transitory computer readable medium for receiving data and one or more redundant equivalent versions of the data from a remote user equipment (UE), buffering the data and the one or more redundant equivalent versions of the data, transmitting the data to a base station, receiving at least one negative acknowledgement, relating to the data, from the base station indicating an unsuccessful reception of the data; and transmitting, in response to receiving the at least one negative acknowledgement, at least one of the one or more redundant equivalent versions of the data to the base station.
Abstract:
Systems and methods are disclosed for sharing network feedback information. The method may include establishing, at a first access terminal, a wireless link with an access point, receiving network configuration data from the access point, composing a network feedback expression that indicates a status or availability of at least one network service associated with the access point, and transmitting the network feedback expression to a second access terminal via a D2D link.
Abstract:
A method for improving device-to-device (D2D) communication in an LTE-Direct communication system includes exchanging communication information between a first user equipment (UE) and a second UE over an LTE-Direct connection with a first network resource of a first set of network resources allocated to the first and second UEs by a base station for the LTE-Direct connection. The method also includes determining, by the first UE, whether a first link quality of the LTE-Direct connection with the first network resource is below a link quality threshold. If so, the LTE-Direct connection is shifted to another network resource of the first set of network resources until an LTE-Direct connection is established that has a link quality that is equal to or greater than the link quality threshold.