Abstract:
Aspects of the present disclosure implement techniques that allow a vehicle performing V2X communications to provide more accurate S-RSSI measurements and CBR calculations for use in channel selection and congestion control. Techniques may include measuring a sidelink received signal strength indicator (S-RSSI) for each of a plurality of sub-channels, determining one or more signal impairment adjustment factors based on the S-RSSI for each of the plurality of sub-channels, calculating a channel busy ratio (CBR) for the plurality of sub-channels based on the one or more signal impairment adjustment factors, and initiating communication with at least one of the plurality of sub-channels based on at least the CBR.
Abstract:
Aspects directed towards synchronizing out of coverage (OOC) vehicle-to-everything (V2X) communications are disclosed. In one example, a scheduled entity detects a loss of a synchronization signal associated with a V2X communication by detecting when a timing uncertainty value or error value is greater than a threshold value. Packet timing information is then received in response to the loss of the synchronization signal from at least one user equipment (UE) synchronized with the synchronization signal. The scheduled entity then maintains the V2X communication by performing a timing adjustment based on the packet timing information.
Abstract:
A method, an apparatus, and a non-transitory computer readable medium for receiving data and one or more redundant equivalent versions of the data from a remote user equipment (UE), buffering the data and the one or more redundant equivalent versions of the data, transmitting the data to a base station, receiving at least one negative acknowledgement, relating to the data, from the base station indicating an unsuccessful reception of the data; and transmitting, in response to receiving the at least one negative acknowledgement, at least one of the one or more redundant equivalent versions of the data to the base station.
Abstract:
A mobile device determines that a primary cell (PCell) and a secondary cell (SCell) belong to a same multicast-broadcast single frequency network (MBSFN) area or that the PCell and the SCell can broadcast the same service. The mobile device determines a communication state of the SCell. If the SCell is active, the mobile device compares signal quality on the PCell and the SCell and selects to decode broadcast content on the PCell or the SCell. If the communication state indicating the SCell is deactivated or released, the mobile device switches to decode the broadcast content on the PCell. If the SCell is released and if the mobile device determines that the PCell is also released, then the mobile device switches to decode the broadcast content on the PCell and initiates a neighbor cell search.
Abstract:
Apparatus, methods, and computer-readable media for facilitating autonomous synchronization are disclosed herein. For example, a UE may be configured to perform an initial synchronization directly to PSCCH and PSSCH when other synchronization sources, such as GNSS, a base station, and/or SLSS, are unavailable. An example method for wireless communication at a user equipment includes receiving a PSCCH. The example method also includes performing an initial synchronization based on the PSCCH. In some examples, the method may also include receiving a PSSCH, and determining a logical subframe number modulo 10 based on the PSSCH. The logical subframe number modulo 10 may correspond to a sequence seed.
Abstract:
A method, an apparatus, and a non-transitory computer readable medium for receiving data and one or more redundant equivalent versions of the data from a remote user equipment (UE), buffering the data and the one or more redundant equivalent versions of the data, transmitting the data to a base station, receiving at least one negative acknowledgement, relating to the data, from the base station indicating an unsuccessful reception of the data; and transmitting, in response to receiving the at least one negative acknowledgement, at least one of the one or more redundant equivalent versions of the data to the base station.
Abstract:
Methods, systems, and devices are described for recovery from a connection disruption of a user equipment (UE) operating in a multi-carrier mode. The UE may establish a first connection with a primary cell and a second connection with a secondary cell while operating in the multi-carrier mode. A determination may be made that a disruption in the connection with the primary cell has occurred, and the UE may perform a connection reestablishment procedure to attempt to reestablish communications. The connection reestablishment routine may prioritize the secondary cell ahead of one or more other cells for attempting to reestablish communications. The prioritization may be based at least in part on the establishment of the second connection in the multi-carrier mode.
Abstract:
Methods, systems, and devices are described for recovery from a connection disruption of a user equipment (UE) operating in a multi-carrier mode. The UE may establish a first connection with a primary cell and a second connection with a secondary cell while operating in the multi-carrier mode. A determination may be made that a disruption in the connection with the primary cell has occurred, and the UE may perform a connection reestablishment procedure to attempt to reestablish communications. The connection reestablishment routine may prioritize the secondary cell ahead of one or more other cells for attempting to reestablish communications. The prioritization may be based at least in part on the establishment of the second connection in the multi-carrier mode.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may adjust a basic safety message generation periodicity based at least in part on a semi-persistent scheduling periodicity for transmitting basic safety messages. The UE may generate one or more basic safety messages based at least in part on the adjusted basic safety message generation periodicity. Numerous other aspects are provided.
Abstract:
A method, apparatus, and computer-readable medium at a transmitting user equipment (UE) in a distributed cellular vehicle-to-everything environment are disclosed to determine a schedule for transmissions on subchannels of multiple frequencies based on a set of UE-specific, dynamic, and performance related metrics or criteria. The metrics may include an estimated number of users on a subchannel, a best-bandwidth fit, channel loading conditions, transmission range, and quality requirements of an application, among others. Such a schedule for transmissions on subchannels of multiple frequencies may result in either an improved capacity utilization, an improved communication quality, or both.