Abstract:
In certain aspects, an amplifier includes a first transistor including a gate, a drain, and a source, wherein the gate of the first transistor is coupled to a first input of the amplifier. The amplifier also includes a second transistor including a gate, a drain, and a source, wherein the gate of the second transistor is coupled to a second input of the amplifier. The amplifier further includes a first signal path coupled between the first input of the amplifier and the source of the second transistor, a second signal path coupled between the second input of the amplifier and the source of the first transistor, a first load coupled to the drain of the first transistor, and a second load coupled to the drain of the second transistor.
Abstract:
In certain aspects of the present disclosure, a chip includes a signal driver having an output coupled to a terminal of a bidirectional link, wherein the signal driver is configured to transmit a first signal to another chip via the bidirectional link. The chip also includes a replica driver configured to generate a replica echo signal, a receiver having a first input coupled to the terminal of the bidirectional link and a second input coupled to the replica driver, and a tunable load coupled between the replica driver and the second input of the receiver. The receiver is configured to receive a second signal at the first input, to receive the replica echo signal at the second input, and to subtract the replica echo signal from the second signal.
Abstract:
A voltage divider circuit is provided that automatically and dynamically adjusts its voltage divider chains as a supply voltage changes. The voltage divider circuit includes a plurality of voltage divider branches having different divider factors to divide the supply voltage and obtain a divided supply voltage. Additionally, a control circuit is coupled to the plurality of voltage divider branches and adapted to automatically monitor the supply voltage and dynamically select a voltage divider branch from among the plurality of voltage divider branches to maintain a selected divided supply voltage within a pre-determined voltage range.
Abstract:
One feature pertains to a digitally controlled oscillator (DCO) that comprises a variable capacitor and noise reduction circuitry. The variable capacitor has a variable capacitance value that controls an output frequency of the DCO. The variable capacitance value is based on a first bank capacitance value provided by a first capacitor bank, a second bank capacitance value provided by a second capacitor bank, and an auxiliary bank capacitance value provided by an auxiliary capacitor bank. The noise reduction circuitry is adapted to adjust the variable capacitance value by adjusting the auxiliary bank capacitance value while maintaining at least one of the first bank capacitance value and/or the second bank capacitance value substantially unchanged. Prior to adjusting the variable capacitance value, the noise reduction circuitry may determine that a received input DCO control word transitions across a capacitor bank sensitive boundary.
Abstract:
Multi-phase clock generation employing phase error detection between multiple delay circuit outputs in a controlled delay line to provide error correction is disclosed. A multi-phase clock generator is provided that includes a controlled delay line and a phase error detector circuit. Tap nodes are provided from outputs of one or more delay circuits in the controlled delay line. To detect and correct for phase errors in the controlled delay line, a phase detection circuit is provided that includes at least two phase detectors each configured to measure a phase offset error between tap nodes from the delay circuit(s) in the controlled delay line. These phase errors are then combined to create an error correction signal, which is used to control the delay of the delay circuit(s) in the controlled delay line to lock the phase of the output of the final delay circuit to an input reference clock signal.
Abstract:
A time-to-digital converter converts the difference between transition times of a reference clock signal and an oscillating signal to a digital signal whose value is proportional to the transitions timing difference. The time-to-digital converter includes an edge detector, a time-to-voltage converter, and an analog-to-digital converter. The edge detector is adapted to detect, during each period of the reference clock signal, the edge (transition) of the oscillating signal that is closest to the edge of the reference clock signal. The time-to-voltage converter is adapted to generate an analog signal proportional to a difference in time between the detected edge of the oscillating signal and the edge of the reference clock signal. The analog-to-digital converter is adapted to convert the analog signal to a digital signal whose value is proportional the difference between the occurrence of the detected edge of the oscillating signal and the edge of the reference clock signal.
Abstract:
A time-to-digital converter converts the difference between transition times of a reference clock signal and an oscillating signal to a digital signal whose value is proportional to the transitions timing difference. The time-to-digital converter includes an edge detector, a time-to-voltage converter, and an analog-to-digital converter. The edge detector is adapted to detect, during each period of the reference clock signal, the edge (transition) of the oscillating signal that is closest to the edge of the reference clock signal. The time-to-voltage converter is adapted to generate an analog signal proportional to a difference in time between the detected edge of the oscillating signal and the edge of the reference clock signal. The analog-to-digital converter is adapted to convert the analog signal to a digital signal whose value is proportional the difference between the occurrence of the detected edge of the oscillating signal and the edge of the reference clock signal.
Abstract:
A voltage divider circuit is provided that automatically and dynamically adjusts its voltage divider chains as a supply voltage changes. The voltage divider circuit includes a plurality of voltage divider branches having different divider factors to divide the supply voltage and obtain a divided supply voltage. Additionally, a control circuit is coupled to the plurality of voltage divider branches and adapted to automatically monitor the supply voltage and dynamically select a voltage divider branch from among the plurality of voltage divider branches to maintain a selected divided supply voltage within a pre-determined voltage range.
Abstract:
A low-power clock generation circuit has a phase generator that receives an input clock signal and uses the input clock signal to generate multiple intermediate clock signals with different phase shifts, a phase rotator circuit that outputs phase-adjusted clock signals, a frequency doubler circuit that receives a plurality of the phase-adjusted clock signals and outputs two frequency-doubled clock signals having a 180° phase difference, and a quadrature clock generation circuit that receives the two frequency-doubled clock signals and provides four output signals that include in-phase and quadrature versions of the two frequency-doubled clock signals.
Abstract:
Aspects generally relate to reducing delay, or phase jitter, in high speed signals transmission. Variations in power supply to ground potential changes the amount of delay introduced by transmit circuitry into the signal being transmitted, resulting in jitter, or phase noise, in the transmitted signal. To reduce phase jitter, or phase noise, aspects disclosed include a variable impedance circuit coupled to the signal distribution network, the impedance level of the variable impedance circuit is adjusted in response to variation in the supply to ground potential, such that the delay introduced by the impedance compensates for changes in the delay due to variations in supply to ground potential, resulting in substantially constant delay.