Abstract:
This disclosure provides devices, apparatuses and methods of providing an optical filter with quantum dot films for converting a first wavelength of light to a second wavelength of light. The optical filter includes a plurality of high refractive index layers and a plurality of low refractive index layers alternatingly disposed between the high refractive index layers. Quantum dots are dispersed in either the high refractive index layers or the low refractive index layers. In some implementations, the quantum dots are capable of absorbing blue light and emitting green light. Thus, the optical filter can be part of a red-green-blue lighting device that includes a first blue LED optically coupled with the optical filter to produce green light, a red LED and a second blue LED.
Abstract:
Systems, methods and methods of manufacture for, among other things, a MEMS display that has a substrate with a first and a second array of apertures. The first and second arrays are, typically, formed on the substrate so that the arrays are adjacent and define a field boundary line that may extend between the two arrays and along a width of the substrate. In at least one array, the apertures that are proximate the field boundary line are placed at locations on the substrate to reduce differences in luminance between one portion of the display and another portion of the display.
Abstract:
This disclosure provides systems, methods and apparatus for providing stacks of optical films that may be used to provide increased on-axis display brightness. In one aspect, an apparatus or system may be provided that includes a light source, a first optical film having triangular cross-section, prismatic light-turning structures, and a second optical film having trapezoidal cross-section, prismatic light-turning structures. The first optical film may be interposed between the light source and the second optical film. In further aspects, a third optical film, similar to the first optical film, may be interposed between the light source and the first optical film. In yet further aspects, one or more additional optical films, similar to the second optical film, may be positioned in the stack such that the second optical film is between the first optical film and the additional optical film(s).
Abstract:
This disclosure provides systems, methods, and apparatus for generating images on a display. Images are generated by displaying, for a first color, a first number of subframes at a full intensity level and a second number of subframes at reduced intensity levels. A third number of subframes of a second color are displayed at a full illumination level and a fourth number of subframes of the second color are displayed at reduced illumination levels. The number of subframes of the second color shown at reduced illumination levels is fewer than the number of subframes of the first color shown at reduced intensity levels.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for forming an image on a display in a display device including a plurality of backlight segments. Each backlight segment is capable of illuminating a respective illumination display segment of a plurality of illumination display segments. In one aspect, a controller associated with the display device is capable of decomposing an image frame into a plurality of frame segments to be displayed on the plurality of illumination display segments. The controller can determine a separate frame segment specific contributing color (FSSCC) for each frame segment based on content of the respective frame segment and a criterion limiting the color difference between a pair of FSSCCs based on the spatial proximity of the respective display regions. The controller can display the image frame according to the plurality of determined FSSCCs.
Abstract:
In one innovative aspect of the disclosure, a method includes patterning a first region and a first portion of a second region of a substrate using a first reticle. The method also includes patterning the second region and a first portion of the first region using a second reticle. The method additionally includes forming a first array of first patterned elements based on the patterning by the first reticle, and forming a second array of second patterned elements based on the patterning by the second reticle. In some implementations, each of the first and the second arrays are incomplete in each of the first portions. However, the first patterned elements in the first portion of the second region are complementary to the second patterned elements in the first portion of the second region. Similarly, the first patterned elements in the first portion of the first region are complementary to the second patterned elements in the first portion of the first region. In some such implementations, the combination of the first array and the second array form a complete array of patterned elements.
Abstract:
This disclosure provides systems, methods and apparatus for reducing flicker in display devices. In one image formation process, the controller can determine a number of subframes to be displayed for a subfield based on a temperature of a display apparatus. In some implementations, the controller can determine dithering parameters based on the determined number of subframes, and perform dithering on pixel intensity values based on the determined dithering parameters. In some implementations, a vector error diffusion technique can be utilized for performing dithering. In some implementations the controller can determine drive voltages for light modulators and drive currents for light sources used for displaying the subframes, based on the temperature of the display apparatus.
Abstract:
This disclosure provides systems, methods and apparatus for reducing undesired capacitance and electrostatic attraction among components of electromechanical systems (EMS) displays. An apparatus includes an array of display elements, a control matrix, and an electric insulation layer. The display elements each include a movable light blocking component coupled to a conductive beam. The control matrix includes a plurality of interconnects, including at least one switched interconnect, which passes under and is electrically isolated from at least one of the conductive beam and the movable light blocking component.
Abstract:
A method of operating a display including loading image data to pixels in multiple rows of pixels in an array of pixels during a data loading phase, actuating the pixels in the multiple rows during an update phase, and illuminating at least one lamp during an lamp illumination phase to illuminate the actuated pixels to form an image on the display, in which each of the loading, actuating and illuminating phases partially overlap in time.
Abstract:
This disclosure provides systems, methods and apparatus for dissipating charge buildup within a display element with a conductive layer. The conductive layer is maintained in electrical contact with a fluid within the display element. The fluid, in turn, remains in contact with light modulators within the display elements. Any charge buildup that may be caused by the filling of the fluid during fabrication of the display device, or during operation of the light modulators can be dissipated by the conductive layer. Thus, by dissipating the charge buildup, the conductive layer reduces or eliminates electrostatic forces due to the charge buildup that may affect the operability of the light modulators. The display can include conductive spacers in an active display region of the display and a spacer-free region that allows the substrates to deform while retaining an electrical connection between the conductive layer and the spacers in the active display region.