Abstract:
The nonvolatile memory device includes a control circuit that controls a sense amplification circuit and a writing circuit. The control circuit changes a value of at least one of (a) a load current and (b) a forming pulse current or a forming pulse voltage, according to a total number of sneak current paths formed by memory cells each including a variable resistance element in a second resistance state having a low resistance value except a selected memory cell in a memory cell array.
Abstract:
A variable resistance nonvolatile memory device includes: a nonvolatile memory element; an NMOS transistor connected to the nonvolatile memory element; a source line connected to the NMOS transistor; a bit line connected to the nonvolatile memory element. When a control circuit causes the nonvolatile memory element to be in the low resistance state, the control circuit controls to flow a first current from a first voltage source to a reference potential point, and applies a first gate voltage to a gate of a NMOS transistor, and when the control circuit causes the nonvolatile memory element to be in the high resistance state, the control circuit controls to flow a second current from a second voltage source to the reference potential point, and applies a second gate voltage to the gate of the NMOS transistor, the second gate voltage being lower than the first gate voltage.
Abstract:
A cross-point memory device including memory cells each includes: a variable resistance element that reversibly changes at least between a low resistance state and a high resistance state; and a current steering element that has nonlinear current-voltage characteristics, and the cross-point memory device comprises a read circuit which includes: a reference voltage generation circuit which comprises at least the current steering element; a differential amplifier circuit which performs current amplification on an output voltage in the reference voltage generation circuit; a feedback controlled bit line voltage clamp circuit which sets the low voltage side reference voltage to increase with an output of the differential amplifier circuit; and a sense amplifier circuit which determines a resistance state of a selected memory cell according to an amount of current flowing through the selected memory cell.
Abstract:
A semiconductor device includes a memory cell; circuitry that generates a reference voltage; and a sense amplifier including a first input terminal electrically connected to the memory cell, and a second input terminal electrically connected to the circuitry. The sense amplifier obtains a value in correlation with a resistance value of the memory cell based on a comparison between a sense voltage applied to the first input terminal and the reference voltage applied to the second input terminal. The sense voltage changes at a speed in correlation with the resistance value of the memory cell. In at least part of a period during which the sense voltage changes, the circuitry causes the reference voltage to change in a direction opposite to a direction in which the sense voltage changes.
Abstract:
A selection circuit that selects a memory cell from a memory cell array and a read circuit for reading a resistance state of a resistance change element in the selected memory cell are provided. In memory cells of odd-numbered-layer and even-numbered-layer memory cell arrays that constitute a multilayer memory cell array, each memory cell in any of the layers has a selection element, a first electrode, a first resistance change layer, a second resistance change layer, and a second electrode that are disposed in the same order. Whether the selected memory cell is located in any layer of the multilayer memory cell array, the read circuit applies a voltage to the selected memory cell to perform the reading operation. The voltage applied to the selected memory cell causes the second electrode to become positive with reference to the first electrode in the selected memory cell.