Abstract:
In a method for writing into a variable resistance nonvolatile memory device according to one aspect of the present disclosure, a verify write operation of newly applying a voltage pulse for changing a resistance state is performed on a variable resistance element which does not satisfy a determination condition for verifying that the resistance state has been changed despite application of a voltage pulse for changing the resistance state, and the determination condition in the verify write operation is relaxed when an average number of times of verify write operation, having already been performed on all or part of a plurality of variable resistance elements that are targets for write operation, exceeds a predetermined number of times.
Abstract:
A write method for writing to a variable resistance nonvolatile memory element, comprising applying a set of strong recovery-voltage pulses at least once to the variable resistance nonvolatile memory element when it is determined that the resistance state of the variable resistance nonvolatile memory element fails to change to a second resistance state, remaining in a first resistance state, the set of strong recovery-voltage pulses including pulses: (1) a first strong recovery-voltage pulse which has a greater amplitude than a normal second voltage for changing the resistance state to the first resistance state, and has the same polarity as the second voltage; and (2) a second strong recovery-voltage pulse which follows the first strong recovery-voltage pulse and has a longer pulse width than the pulse width of the normal first voltage for changing the resistance state to the second resistance state, and has the same polarity as the first voltage.
Abstract:
Each memory cell is formed at a different one of cross points of bit lines extending in an X direction and formed in a plurality of layers and word lines extending in a Y direction. In a multilayer cross point structure in which a plurality of vertical array planes sharing the word lines are aligned in the Y direction each for a group of bit lines aligned in a Z direction, even and odd layer bit line selection switch elements switch connection and disconnection between a global bit line and the commonly-connected even layer bit line and the commonly-connected odd layer bit line, respectively. Each of the even and odd layer bit line selection switch elements has both a bit line selection function and a current limiting function in low resistance writing.
Abstract:
A cross-point variable resistance nonvolatile memory device comprises: a memory cell array; a column decoder and pre-charge circuit which pre-charges a selected word line to a first voltage in a period P1 among the period P1, a period P2, and a period S that are included in this order in a read operation of a memory cell; a low decoder driver which pre-charges a selected word line to the first voltage in the periods P1 and P2 and sets the selected word line to a third voltage different from the first voltage in the period S; a feedback controlled bit line voltage clamp circuit which sets the selected bit line to a second voltage in the periods P2 and S; and a sense amplifier which determines the resistance state in a memory cell at a cross-point of the selected word line and the selected bit line in the period S.
Abstract:
Each memory cell is formed at a different one of cross points of bit lines extending in an X direction and formed in a plurality of layers and word lines extending in a Y direction. In a multilayer cross point structure in which a plurality of vertical array planes sharing the word lines are aligned in the Y direction each for a group of bit lines aligned in a Z direction, even and odd layer bit line selection switch elements switch connection and disconnection between a global bit line and the commonly-connected even layer bit line and the commonly-connected odd layer bit line, respectively. Each of the even and odd layer bit line selection switch elements has both a bit line selection function and a current limiting function in low resistance writing.
Abstract:
The nonvolatile memory device includes a control circuit that controls a sense amplification circuit and a writing circuit. The control circuit changes a value of at least one of (a) a load current and (b) a forming pulse current or a forming pulse voltage, according to a total number of sneak current paths formed by memory cells each including a variable resistance element in a second resistance state having a low resistance value except a selected memory cell in a memory cell array.
Abstract:
Provided is a variable resistance element (Rij) the resistance state of which is reversibly changed by applying electrical signals of different polarities; and a current steering element (Dij) in which a first current is larger than a second current, the first current being a current which flows when a voltage of the first polarity having a first value is applied, the first value being less than a predetermined voltage value and having an absolute value greater than zero, the second current being a current which flows when a voltage of the second polarity having an absolute value which is the first value is applied, the second polarity being different from the first polarity, in which Rij and Dij are connected in series such that the polarity of a voltage to be applied to Dij is the second polarity when the resistance state of Rij is changed to high resistance state.
Abstract:
A writing method of a variable resistance non-volatile memory element comprises determining, in a first determination step, whether or not a resistance state of the variable resistance non-volatile memory element does not switch to a first resistance state and remains in a second resistance state, when a pulse of a second voltage is applied to the variable resistance non-volatile memory element; and when it is determined that the resistance state of the variable resistance non-volatile memory element does not switch to the first resistance state and remains in the second resistance state in the first determination step, applying, in a recovery step, at least once to the variable-resistance non-volatile memory element a recovery voltage pulse set composed of two pulses which are a first recovery voltage pulse which has the same polarity as that of the first voltage and a second recovery voltage pulse which has the same polarity as that of the second voltage, has a greater amplitude than the second voltage, and is applied subsequently to the first recovery voltage pulse.
Abstract:
A variable resistance nonvolatile memory device includes: bit lines in layers; word lines in layers formed at intervals between the layers of the bit lines; a memory cell array including basic array planes and having memory cells formed at crosspoints of the bit lines in the layers and the word lines in the layers; global bit lines provided in one-to-one correspondence with the basic array planes; and sets provided in one-to-one correspondence with the basic array planes, and each including a first selection switch element and a second selection switch element, wherein memory cells connected to the same word line are successively accessed in different basic array planes, and memory cells are selected so that voltages applied to the word line and bit lines are not changed and a direction in which current flows through the memory cells is the same.
Abstract:
Provided is a variable resistance element (Rij) the resistance state of which is reversibly changed by applying electrical signals of different polarities; and a current steering element (Dij) in which a first current is larger than a second current, the first current being a current which flows when a voltage of the first polarity having a first value is applied, the first value being less than a predetermined voltage value and having an absolute value greater than zero, the second current being a current which flows when a voltage of the second polarity having an absolute value which is the first value is applied, the second polarity being different from the first polarity, in which Rij and Dij are connected in series such that the polarity of a voltage to be applied to Dij is the second polarity when the resistance state of Rij is changed to high resistance state.