Abstract:
A fluorescence observation unit includes a scanner that scans ultrashort pulsed laser light, a pupil projection lens that focuses the scanned ultrashort pulsed laser light, an image-forming lens that converts the focused ultrashort pulsed laser light to substantially collimated light and causes the ultrashort pulsed laser light to be incident on the objective lens, and a dichroic mirror that splits off, from the optic path of the ultrashort pulsed laser light, fluorescence generated in a sample due to irradiation with the ultrashort pulsed laser light and collected by the objective lens. The image-forming lens includes a first optical system having positive refractive power, and a second optical system having negative refractive power and disposed at a position closer to the scanner than the first optical system is. The dichroic mirror is disposed between the first optical system and the second optical system.
Abstract:
In order to allow precise observation of a specimen at an observation point with a desired depth without changing the working distance of an objective optical system while employing a simple configuration, a laser scanning microscope according to the present invention includes an objective lens having a plurality of optical elements that are disposed with gaps therebetween in an optical-axis direction and that condense laser light emitted from a light source onto a specimen and also having an adjustment ring that allows changing of the focal point by moving the optical elements in the optical-axis direction; a scanner that has a galvanometer mirror capable of oscillating about a predetermined oscillation axis and that scans the laser light condensed onto the specimen by the objective lens in accordance with an oscillation angle of the galvanometer mirror; a light detecting unit that obtains image information of the specimen on the basis of return light returned from the specimen scanned with the laser light; and a scanner controlling unit that controls the oscillation angle of the galvanometer mirror so as to maintain an observation range of the specimen observed by the light detecting unit on the basis of the positions of the optical elements moved by the adjustment ring.
Abstract:
A scanning optical microscope includes a light source, a light converging optical system, a stage, a scanning unit which displaces an illumination light and the stage relatively, a detecting optical system, and a photodetector. A light modulation element and a relay optical system are disposed on the light converging optical system side of the light source, and a modulated signal having only amplitude changed is input to the light modulation element, and the light modulation element is positioned such that the illumination light emerged from the light modulation element with respect to the modulated signal of a predetermined amplitude coincides with an optical axis of the light converging optical system, and a position of a pupil of the light converging optical system and a position of the light modulation element are conjugate through at least the relay optical system.
Abstract:
A fluorescence observation apparatus includes a fluorescence observation unit, which includes a scanner that scans ultrashort pulsed laser light from a light source, a pupil projection lens that focuses the laser light scanned by the scanner, an image-forming lens that converts the focused laser light to substantially collimated light and causes the laser light to be incident on an objective lens, and a dichroic mirror that splits off fluorescence that is generated by the laser light focused on a sample by the objective lens and is collected by the objective lens. A photodetector detects the fluorescence split off by the dichroic mirror. A multi-mode optical fiber connects the fluorescence observation unit and the photodetector. A swiveling mechanism causes the fluorescence observation unit to swivel about an axis near the focal position of the objective lens. And a light-source optical fiber connects the light source and the fluorescence observation unit.
Abstract:
A microscope system according to the present invention includes a laser light source, a plurality of laser microscopes, and an optical path switching unit that is provided between the laser light source and the laser microscopes and switches a supply destination of a laser beam among the plurality of laser microscopes by changing a beam splitter to be arranged on an incident optical axis, in which each of the laser microscopes includes an optical axis adjustment unit that adjusts an optical axis of the laser beam, and a control unit that controls the optical axis adjustment unit based on identification information about the beam splitter arranged on the incident optical axis.