Abstract:
In one embodiment, a charged particle beam writing method is for writing a pattern in a writing area on a substrate by irradiating a charged particle beam onto the substrate while moving the substrate to write stripes sequentially, each of the stripes having a width W and shapes obtained by dividing the writing area by the width W. The method includes performing S times (S is an integer greater than or equal to two) strokes, each of the strokes which is a process writing the stripes in a multiplicity of 2n (n is an integer greater than or equal to one) while shifting a reference point of each of the stripes in the width direction by a preset stripe shift amount and changing a moving direction of the substrate for each of the stripes, and writing while the reference point of the stripes in the each of the strokes in the width direction of the stripes is shifted by a preset stroke shift amount in each of the strokes.
Abstract:
In one embodiment, a charged particle beam drawing apparatus deflects a charged particle beam with a deflector to draw a pattern. The apparatus includes a storage unit that stores an approximate formula indicating a correspondence relationship between a settling time for a DAC amplifier that controls the deflector, and a position shift amount, from a design position, of a drawn position of each evaluation pattern drawn on a first substrate while the settling time and an amount of deflection by the deflector are changed, a shot position correction unit that creates a correction formula indicating a relationship between an amount of deflection and a shot position shift amount at the settling time, from the approximate formula and the settling time for the DAC amplifier based on an amount of deflection of a shot, obtains a position correction amount by using the amount of deflection of the shot and the correction formula, and corrects a shot position defined by the shot data based on the position correction amount, and a drawing unit that performs drawing by using the shot data with a corrected shot position.
Abstract:
In one embodiment, a charged particle beam writing apparatus includes a deflector deflecting a charged particle beam, a first correcting lens and a second correcting lens correcting a focus position of the charged particle beam, a focus correction amount calculator calculating a first correction amount for the focus position according to a change in a height position of a sample surface, and calculating a second correction amount for the focus position according to a change in shot size of the charged particle beam, a first DAC (digital to analog converter) amplifier applying a voltage for a ground potential based on the first correction amount to the first correcting lens, and a second DAC amplifier applying a voltage for a ground potential based on the second correction amount to the second correcting lens, an output of the second DAC amplifier being smaller than an output of the first DAC amplifier.
Abstract:
An electron beam writing apparatus includes: a first aperture plate that shapes an electron beam emitted from an electron gun assembly; a second aperture plate onto which an electron beam of an aperture plate image passing through the first aperture plate is projected; and a first shaping deflector and a second shaping deflector which are provided between the first aperture plate and the second aperture plate, respectively, deflect an electron beam, control an irradiation position of the aperture plate image on the second aperture plate, and determine a shot shape and a shot size. The first shaping deflector deflects an electron beam such that the aperture plate image is positioned at a determined position in accordance with a shot shape and a shot size. The second shaping deflector deflects an electron beam deflected by the first shaping deflector and controls formation of a desirable shot size.