Abstract:
The present invention relates to a method for fabricating a cavity in substrate for a component for electromagnetic waves, the method comprising providing said cavity by removal of material from said substrate by removal of material by immersing the substrate in a liquid bath of a chemical etchant, so that resultant cavity has a top and a bottom side and sidewalls, and said cavity at one of said top and/or bottom sides exhibits an at least a four sided opening having an opening with at least two different adjacent angles. The invention also relates to the component for microwave applications.
Abstract:
The present invention relates to a method for fabricating a cavity in substrate for a component for electromagnetic waves, the method comprising providing said cavity by removal of material from said substrate by removal of material by immersing the substrate in a liquid bath of a chemical etchant, so that resultant cavity has a top and a bottom side and sidewalls, and said cavity at one of said top and/or bottom sides exhibits an at least a four sided opening having an opening with at least two different adjacent angles. The invention also relates to the component for microwave applications.
Abstract:
The invention relates to a microwaveguide that is integrated in the dielectric layer of a conductor carrier, e.g. a printed circuit board. The waveguide enables different types of active and/or passive functions intended to influence the signals sent through the waveguide to be integrated at appropriate positions in the waveguide.
Abstract:
More even current distribution in a transmission line is provided by an arrangement including a first conductive layer, a dielectric layer and a ground plane. The first conductive layer, the dielectric layer and the ground plane extend mainly in substantially the same direction, with the dielectric layer arranged between the first conductive layer and the ground plane. The arrangement includes an object located between the dielectric layer and the ground plane. The object can be electrically conductive or made of a dielectric material.
Abstract:
Method and arrangements for reducing crosstalk between conductors on a conductor carrier, and methods for manufacturing conductor carriers including these arrangements are presented. Crosstalk between the conductors is prevented by providing a dielectric material in the space between each conductor and an earth plane so that the electric field can be tied down within this space and thus prevent leakage of field lines to the co-lateral conductors. The capacitance is increased by an arrangement in the space immediately beneath the conductor so as to reduce the distance between conductors and the earth plane and/or through the medium of a dielectric material that has a higher dielectric index &egr;r than the dielectric material.
Abstract:
The present invention relates to a method of bonding a first member (110, 210, 130, 230, 410, 430, 510, 530, 610) to a second silicon member (120, 220, 420a, 420b, 600) through anodic bonding. The method comprises the steps of selectively depositing on said first member bondable sections (170a, 170b, 270, 470a, 470b, 470c, 570, 620) before bringing said first and second members together for anodic bonding.
Abstract:
A carrier intended for one or several electronic components and having spaces provided for the components on at least one surface is provided. The carrier has an at least partly conductive Low Temperature Cofire Ceramic (LTCC) material with good thermal conduction capacity, so that the carrier provides mechanical support for the components and conducts heat generated by the components.
Abstract:
A compact printed board assembly has a patterned copper-coated substrate (1) with electronic components (5, 12) mounted thereon. Depending on the height of the components, either SBU lacquer (11) or non-flow prepreg (3) and laminate (4) surround the electronic components. This subassembly is then sandwiched between two RC (resin coated) copper foils (8) with the resin (7) facing the components (5, 12) and burying them, thereby providing a new etchable copper surface which can be connected by means of microvias (10) to the embedded components (5, 12).
Abstract:
A component (16) mounted on the board (20) is cooled by a cooling surface (15) in contact with a heat sink element in the form of a metal stud (8) which, in turn, may be connected to an outer cooling surface. One method of achieving this is to form holes (4) in a laminate (1), etching patterns (5), placing a metal stud (8) in the hole (4), applying a dielectric (9) to the upper and lower side of the laminate (1), forming openings (14) in the dielectric (9), and thereafter metal plating the entire circuit board and etching further patterns. Component 16 can then be mounted on the printed circuit board (20). A heat sink element (8) includes a cutting edge (18) and can be used beneficially in conjunction with one embodiment of the method.
Abstract:
Invention refers to an electric component, preferably a component buried in a Printed Circuit Board (PCB) including at least two conductive layers (13,21, 36; 15, 35) and an intermediate layer (14, 37). The intermediate layer (14, 37) further consists of at least two layers (16, 17, 22, 23, 38, 39, 40): at least a first layer (17, 23, 39) and a second layer (16, 22, 38, 40), which at least first layer has more elastic characteristic than the second layer (16, 22, 38, 40) at a certain temperature and/or pressure.