Abstract:
A method for controlling an operation system of a vehicle includes: determining, by at least one sensor, first object information based on an initial sensing of an object around the vehicle driving in a first section; determining, by at least one processor, fixed object information based on the sensed first object information; storing, by the at least one processor, the fixed object information; determining, by the at least one sensor, second object information based on a subsequent sensing of an object around the vehicle driving in the first section; and generating, by the at least one processor, a driving route based on the sensed second object information and the stored fixed object information.
Abstract:
An air circulation control device that includes a camera configured to capture an outside image of the vehicle; and a processor configured to: identify an object from the outside image, determine that an air circulation mode is a first air circulation mode or a second air circulation mode based on the identified object, and provide a signal including information indicating the air circulation mode is disclosed.
Abstract:
A vehicle driving assistance apparatus that includes: a sensing unit configured to sense an object outside the vehicle; and a processor configured to: obtain surrounding situation information, based on a location of the object outside the vehicle, determine whether the object approaches the vehicle from a traveling lane or a lateral lane, based on the determination of whether the object approaches the vehicle from a traveling lane or a lateral lane, generate a control signal that is configured to control at least one of a drive apparatus of the vehicle, a steering apparatus of the vehicle, and/or a brake apparatus of the vehicle (i) to avoid collision between the vehicle and the object or (ii) to perform an action that reduces an impulse on the vehicle from the collision, and provide the control signal to a vehicle control system of the vehicle.
Abstract:
The present invention relates to a vehicle driving assistance method comprising the steps of: selecting a driver type; detecting the driver's condition; and controlling, in phases, at least one vehicle driving assistance function or selectively controlling a plurality of vehicle driving assistance functions, according to the selected driver type and the detected driver's condition.
Abstract:
A vehicle driving assistance apparatus that includes: a sensing unit configured to sense an object outside the vehicle; and a processor configured to: obtain surrounding situation information, based on a location of the object outside the vehicle, determine whether the object approaches the vehicle from a traveling lane or a lateral lane, based on the determination of whether the object approaches the vehicle from a traveling lane or a lateral lane, generate a control signal that is configured to control at least one of a drive apparatus of the vehicle, a steering apparatus of the vehicle, and/or a brake apparatus of the vehicle (i) to avoid collision between the vehicle and the object or (ii) to perform an action that reduces an impulse on the vehicle from the collision, and provide the control signal to a vehicle control system of the vehicle.
Abstract:
A driver assistance apparatus for a vehicle may be provided with Idle Stop and Go (ISG), and the driver assistance apparatus may include: an interface configured to receive information; and a processor. The processor may be configured to: receive, through the interface, driving information of the vehicle; and based on a determination that the vehicle is stopped in a first state in which the ISG is enabled or that the vehicle is stopped in a second state in which a gearshift of the vehicle is engaged in a Park (P) mode and an engine of the vehicle is turned on, perform a stopping operation for the vehicle based on the driving information of the vehicle.
Abstract:
A steering input apparatus for a vehicle includes a grip position sensor configured to sense a grip position on a rim of a steering wheel of the vehicle. The steering input apparatus also includes at least one processor configured to, based on a determination that the grip position on the rim of the steering wheel sensed through the grip position sensor is improper for a driving situation of the vehicle, perform a control operation to output grip guide information for the rim of the steering wheel.
Abstract:
A driver assistance apparatus includes an interface configured to receive first navigation information generated based on GPS information of the vehicle, a camera configured to acquire an image of a view ahead of the vehicle, and a processor. The processor is configured to detect an object in the acquired image of the view ahead of the vehicle, determine, based on the detected object, a driving situation of the vehicle, and determine whether the driving situation of the vehicle is consistent with the first navigation information. Based on a determination that the driving situation of the vehicle is not consistent with the first navigation information, the process generates, based on the driving situation of the vehicle, second navigation information of the vehicle, and provides the second navigation information to an output unit.
Abstract:
A driver assistance apparatus for a vehicle includes an object detection sensor that acquires data in a driving direction of the vehicle or around the vehicle. The driver assistance apparatus also includes a processor that detects, based on the acquired data, an object and determines, based on the acquired data, at least one attribute of the detected object. The processor detects that the vehicle has collided with the object and determines, based on detecting that the object has collided with the vehicle and based on the at least one attribute of the object, whether to perform a hood lift-up or pedestrian protection airbag deployment. The processor further provides a control signal for the hood lift-up or the pedestrian protection airbag deployment based on determining whether to perform the hood lift-up or the pedestrian protection airbag deployment.