Abstract:
There are provided a printed circuit board and a manufacturing method thereof. The printed circuit board (PCB) includes an adhesive film disposed between an insulating layer and a circuit pattern, wherein the adhesive film includes poly(glycidyl methacrylate). The printed circuit board may include the adhesive film between the circuit pattern and the insulating layer, and thus, adhesive strength may be increased, while having a low roughness value, a fine circuit pattern may be formed, and reliability thereof may be enhanced.
Abstract:
Disclosed are a memristor device, a method of fabricating the same, a synaptic device including a memristor device, and a neuromorphic device including a synaptic device. The disclosed memristor device may comprise a first electrode, a second electrode disposed to be spaced apart from the first electrode; and a resistance changing layer including a copolymer between the first electrode and the second electrode. The copolymer may be a copolymer of a first monomer and a second monomer, and the first polymer formed from the first monomer may have a property that diffusion of metal ions is faster than that of the second polymer formed from the second monomer. The second polymer may have a lower diffusivity of metal ions as compared with the first polymer. The first monomer may include vinylimidazole (VI). The second monomer may include 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane (V3D3). The copolymer may include p(V3D3-co-VI).
Abstract:
Disclosed herein are a printed circuit board and a method for manufacturing the same. The printed circuit board including an adhesive promoter interposed between an insulating layer and a circuit layer on a substrate in order to improve adhesion therebetween; and a first metal layer formed between the adhesive promoter and the circuit layer has high adhesion between an insulating layer such as a resin and a circuit while having low roughness by including a polymer adhesive promoter, easily forms a fine circuit and has low signal transmission loss due to low roughness, and has high reliability due to the high adhesion.
Abstract:
Provided are a method of locally sealing only pores present in a surface part of a porous dielectric material by forming a polymer thin film through an initiated chemical vapor deposition (iCVD) method using an initiator, and a method of minimizing an increase in a dielectric constant induced therefrom.
Abstract:
Provided are methods of sealing open pores of a surface of a porous dielectric material using an initiated chemical vapor deposition (iCVD) process. In one example method of sealing open pores, since the polymer thin film having a significantly thin thickness may be formed by a solvent-free vapor deposition method without plasma treatment, it is possible to minimize deterioration of characteristics of the dielectric material vulnerable to plasma and a chemical solution.
Abstract:
A method of preparing a material having a superhydrophobic region and a hydrophobic region is described, involving preparing a superhydrophobic surface body and hydrolyzing one surface of the prepared superhydrophobic surface body using a strong base. Such preparation method is simpler than conventional preparation methods and is capable of preparing a material having opposite surface characteristics at low costs.
Abstract:
Provided are a device for a digital assay of targets according to an exemplary embodiment of the present disclosure and a method using the same. The digital assay method of targets according to the exemplary embodiment of the present disclosure includes acquiring an image for a plurality of microdroplets, predicting at least one region based on the image for the plurality of microdroplets using an artificial neural network-based prediction model configured to segment at least one region among positive microdroplets, negative microdroplets, and atypical microdroplets, with the image for the plurality of microdroplets as an input, determining a number for the plurality of microdroplets based on the at least one region, and providing quantitative data of targets based on the number for the plurality of microdroplets.
Abstract:
Provided are methods of sealing open pores of a surface of a porous dielectric material using an initiated chemical vapor deposition (iCVD) process. In one example method of sealing open pores, since the polymer thin film having a significantly thin thickness may be formed by a solvent-free vapor deposition method without plasma treatment, it is possible to minimize deterioration of characteristics of the dielectric material vulnerable to plasma and a chemical solution.