Abstract:
Disclosed is a piezoelectric voice recognition sensor, which includes a flexible thin film, a piezoelectric material layer laminated on the flexible thin film, and an electrode laminated on the piezoelectric material layer, wherein the electrode includes a plurality of frequency separation channels arranged in a row, and the plurality of frequency separation channels have different lengths from each other. The piezoelectric voice recognition sensor separates a voice, recognized using a plurality of frequency separation channels having a trapezoidal shape, through the plurality of channels depending on frequencies, and simultaneously converts the separated voice signals from mechanical vibration signals into electric signals by means of the flexible piezoelectric element so that the converted electric signals are recognized.
Abstract:
Provided is a flexible device, which includes a flexible substrate, a plurality of electrode lines provided on the flexible substrate and configured to contact the following anisotropic conductive film and then extend to a side of the flexible substrate, an anisotropic conductive film configured to contact the electrode line and laminated on the flexible substrate, a plurality of bumps provided on the anisotropic conductive film, and a circuit board having an electronic device provided at one side thereof and configured to contact the plurality of bumps.
Abstract:
Provided is a method for separating a nanogenerator, which includes laminating a buffer layer on a sacrificial substrate, making a nanogenerator on the buffer layer, laminating a metal layer on the nanogenerator and separating the nanogenerator from the buffer layer.Here, a nanogenerator is separated by using a stress difference between the sacrificial substrate and the metal layer, instead of an existing method in which a nanogenerator is separated from the sacrificial substrate by means of wet etching or the like. In particular, according to a difference between a tensile stress at the metal layer such as nickel and a compressive stress at the lower silicon substrate, the nanogenerator is intactly separated from the silicon oxide layer serving as a buffer layer. Therefore, the nanogenerator may be separated from the sacrificial substrate in a mechanical way, which is safer and more economic in comparison to an existing chemical separation method using an etching solution. Further, it is also possible to avoid a damage of the nanogenerator caused by an etching solution.
Abstract:
Provided is a flexible device, which includes a flexible substrate, a plurality of electrode lines provided on the flexible substrate and configured to contact the following anisotropic conductive film and then extend to a side of the flexible substrate, an anisotropic conductive film configured to contact the electrode line and laminated on the flexible substrate, a plurality of bumps provided on the anisotropic conductive film, and a circuit board having an electronic device provided at one side thereof and configured to contact the plurality of bumps.
Abstract:
The present disclosure provides a method for transfer and assembly of RGB micro-light-emitting diodes using vacuum suction force whereby the vacuum state of micrometer-sized adsorption holes to which micro-light-emitting diodes formed on a mother substrate or a temporary substrate are bonded is controlled selectively, so that only the micro-light-emitting diode devices desired to be detached from the mother substrate or the temporary substrate are detached from the mother substrate or the temporary substrate using vacuum suction force and then transferred to a target substrate.
Abstract:
Disclosed is a piezoelectric voice recognition sensor, which includes a flexible thin film, a piezoelectric material layer laminated on the flexible thin film, and an electrode laminated on the piezoelectric material layer, wherein the electrode includes a plurality of frequency separation channels arranged in a row, and the plurality of frequency separation channels have different lengths from each other. The piezoelectric voice recognition sensor separates a voice, recognized using a plurality of frequency separation channels having a trapezoidal shape, through the plurality of channels depending on frequencies, and simultaneously converts the separated voice signals from mechanical vibration signals into electric signals by means of the flexible piezoelectric element so that the converted electric signals are recognized.
Abstract:
A pulse sensing module used in a blood pressure measuring device attached to the skin to allow at least one of systolic pressure Psystolic, diastolic pressure Pdiastolic, and blood pressure variation to be measured according to an embodiment of the present disclosure includes a piezoelectric layer that includes a piezoelectric material for generating a piezoelectric effect due to a pulse and a protective layer that is applied to the piezoelectric layer to protect the piezoelectric layer, allows a poling process of applying a high voltage to the first electrode line and the second electrode line formed on the piezoelectric layer to improve the polarity of the piezoelectric material, and has an opening for allowing a portion of the first electrode line and a portion of the second electrode line to be exposed.