Abstract:
A composite of a base and an array of needle-like crystals formed on a surface of the base is provided, in which the base side and the opposite side to the base with respect to the array can be isolated in a satisfactory manner. A composite 10 contains a transparent electrode 2 serving as the base and an array 4 of needle-like crystals 3 formed thereon. The needle-like crystals 3 are made of, for example, zinc oxide. The array 4 includes a first region R1 on the transparent electrode 2 side and a second region R2 on the opposite side to the transparent electrode 2 with respect to the first region R1. A proportion of the cross section of the needle-like crystals 3 in a plane parallel to the surface of the transparent electrode 2 is lower in the second region R2 than in the first region R1, and the surface of the transparent electrode 2 is substantially covered with the needle-like crystals 3 in the first region R1.
Abstract:
A composite of a base and an array of needle-like crystals formed on a surface of the base is provided, in which the base side and the opposite side to the base with respect to the array can be isolated in a satisfactory manner. A composite 10 contains a transparent electrode 2 serving as the base and an array 4 of needle-like crystals 3 formed thereon. The needle-like crystals 3 are made of, for example, zinc oxide. The array 4 includes a first region R1 on the transparent electrode 2 side and a second region R2 on the opposite side to the transparent electrode 2 with respect to the first region R1. A proportion of the cross section of the needle-like crystals 3 in a plane parallel to the surface of the transparent electrode 2 is lower in the second region R2 than in the first region R1, and the surface of the transparent electrode 2 is substantially covered with the needle-like crystals 3 in the first region R1.
Abstract:
A composite of a base and an array of needle-like crystals formed on the surface of the base is provided, in which the base side and the opposite side to the base with respect to the array can be isolated in a satisfactory manner. A composite 10 includes a transparent electrode 2 serving as the base, an array 4 of needle-like crystals 3 formed thereon, and a coating film 15 covering the surface of the needle-like crystals 3. The needle-like crystals 3 are made of, for example, zinc oxide, and the coating film 15 contains, for example, titanium oxide. The array 4 includes a first region R1 on the transparent electrode 2 side and a second region R2 on the opposite side to the transparent electrode 2 with respect to the first region R1. A proportion of the cross section of the needle-like crystals 3 in a plane parallel to the surface of the transparent electrode 2 is lower in the second region R2 than in the first region R1, and the surface of the transparent electrode 2 is substantially covered with the needle-like crystals 3 in the first region R1.
Abstract:
A semiconductor device and its manufacturing method are provided in which an epitaxial silicon layer is formed by a selective epitaxial growth method over a semiconductor substrate and a polysilicon layer is formed by an ordinary deposition method on the epitaxial silicon layer and these layers and are formed over a semiconductor device in a continuous process within the same furnace for a CVD apparatus.
Abstract:
In a semiconductor memory of the invention, the source or drain of a transfer gate MOS transistor is electrically connected to a charge storage first conductive layer through a third conductive layer.
Abstract:
A solid detergent composition, suitable for use in personal hygiene, having improved slough loss and wear rate characteristics is presented. This solid detergent compositions contains:(A) 40 to 89.9% by weight of at least one linear alpha-olefin sulfonate having 12 to 28 carbon atoms,(B) 10 to 60% by weight of at least one, tertiary amine oxide having general formulae (I) and (II) ##STR1## wherein R.sup.1 represents an alkyl group having 16 to 24 carbon atoms, R.sup.2 represents an alkyl group having 1 to 11 carbon atoms, R.sup.3 represents an alkyl group having 1 to 3 carbon atoms, R.sup.4 and R.sup.5 independently represent an alkyl group having 12 to 24 carbon atoms and R.sup.6 represents an alkyl group having 1 to 3 carbon atoms, and(C) 0.1 to 20% by weight of water.
Abstract:
A manufacturing method of a semiconductor memory device for manufacturing a first semiconductor device and a second semiconductor device wherein a cell array ratio is smaller than that of the first semiconductor device, said manufacturing method has forming the height of first element-isolating insulating films of first memory cell array region of said first semiconductor device so as to be a predetermined height, by performing etching treatment under predetermined conditions using a first etching mask having a first opening for exposing the entirety of said first memory cell array region, and forming the height of second element-isolating insulating films of second memory cell array region and part of peripheral circuit region of said second semiconductor device so as to be the predetermined height, by performing etching treatment under said predetermined conditions using a second etching mask having a second opening for exposing the entirety of said second memory cell array region and a third opening for exposing part of said peripheral circuit region.
Abstract:
A nonvolatile semiconductor memory includes a first and a second active area configured to extend in the column direction in parallel; an element isolating region configured to electrically separate the first and the second active area; a plurality of word lines configured to extend in the row direction and be constituted by respective main parts and respective ends; and a plurality of memory cell transistors configured to be disposed on intersections between the respective main parts of the plurality of word lines and the second active area. Each memory cell transistor comprises a gate insulating film, a floating gate electrode, an inter-gate insulating film, and a control gate electrode, constituting a memory cell array; a short-circuit region configured to electrically short circuit the ends of the plurality of word lines; and a trench configured to separate the ends from the main parts of the plurality of word lines.
Abstract:
A nonvolatile semiconductor memory includes a first and a second active area configured to extend in the column direction in parallel; an element isolating region configured to electrically separate the first and the second active area; a plurality of word lines configured to extend in the row direction and be constituted by respective main parts and respective ends; and a plurality of memory cell transistors configured to be disposed on intersections between the respective main parts of the plurality of word lines and the second active area. Each memory cell transistor comprises a gate insulating film, a floating gate electrode, an inter-gate insulating film, and a control gate electrode, constituting a memory cell array; a short-circuit region configured to electrically short circuit the ends of the plurality of word lines; and a trench configured to separate the ends from the main parts of the plurality of word lines.
Abstract:
A manufacturing method of a semiconductor memory device for manufacturing a first semiconductor device and a second semiconductor device wherein a cell array ratio is smaller than that of the first semiconductor device, said manufacturing method has forming the height of first element-isolating insulating films of first memory cell array region of said first semiconductor device so as to be a predetermined height, by performing etching treatment under predetermined conditions using a first etching mask having a first opening for exposing the entirety of said first memory cell array region, and forming the height of second element-isolating insulating films of second memory cell array region and part of peripheral circuit region of said second semiconductor device so as to be the predetermined height, by performing etching treatment under said predetermined conditions using a second etching mask having a second opening for exposing the entirety of said second memory cell array region and a third opening for exposing part of said peripheral circuit region.